

 Mix

 v1.16.2

 Table of contents

 	

 	Modules

 	Mix

 	Mix.Generator

 	Mix.Project

 	Mix.Release

 	Mix.SCM

 	Mix.Shell

 	Mix.Shell.IO

 	Mix.Shell.Process

 	Mix.Shell.Quiet

 	Mix.Task

 	Mix.Task.Compiler

 	Mix.Task.Compiler.Diagnostic

 	Exceptions

 	Mix.ElixirVersionError

 	Mix.Error

 	Mix.InvalidTaskError

 	Mix.NoProjectError

 	Mix.NoTaskError

 	Mix Tasks

 	mix app.config

 	mix app.start

 	mix app.tree

 	mix archive

 	mix archive.build

 	mix archive.check

 	mix archive.install

 	mix archive.uninstall

 	mix clean

 	mix cmd

 	mix compile

 	mix compile.app

 	mix compile.elixir

 	mix compile.erlang

 	mix compile.leex

 	mix compile.protocols

 	mix compile.yecc

 	mix deps

 	mix deps.clean

 	mix deps.compile

 	mix deps.get

 	mix deps.loadpaths

 	mix deps.precompile

 	mix deps.tree

 	mix deps.unlock

 	mix deps.update

 	mix do

 	mix escript

 	mix escript.build

 	mix escript.install

 	mix escript.uninstall

 	mix eval

 	mix format

 	mix help

 	mix iex

 	mix loadconfig

 	mix loadpaths

 	mix local

 	mix local.hex

 	mix local.public_keys

 	mix local.rebar

 	mix new

 	mix profile.cprof

 	mix profile.eprof

 	mix profile.fprof

 	mix release

 	mix release.init

 	mix run

 	mix test

 	mix test.coverage

 	mix xref

Mix

Mix is a build tool that provides tasks for creating, compiling,
and testing Elixir projects, managing its dependencies, and more.

 Mix.Project

The foundation of Mix is a project. A project can be defined by using
Mix.Project in a module, usually placed in a file named mix.exs:
defmodule MyApp.MixProject do
 use Mix.Project

 def project do
 [
 app: :my_app,
 version: "1.0.0"
]
 end
end
See the Mix.Project module for detailed documentation on Mix projects.
Once the project is defined, a number of default Mix tasks can be run
directly from the command line:
	mix compile - compiles the current project
	mix test - runs tests for the given project
	mix run - runs a particular command inside the project

Each task has its own options and sometimes specific configuration
to be defined in the project/0 function. You can use mix help
to list all available tasks and mix help NAME to show help for
a particular task.
The best way to get started with your first project is by calling
mix new my_project from the command line.

 Mix.Task

Tasks are what make Mix extensible.
Projects can extend Mix behaviour by adding their own tasks. For
example, adding the task below inside your project will
make it available to everyone that uses your project:
defmodule Mix.Tasks.Hello do
 use Mix.Task

 def run(_) do
 Mix.shell().info("Hello world")
 end
end
The task can now be invoked with mix hello.
See the Mix.Task behaviour for detailed documentation on Mix tasks.

 Dependencies

Mix also manages your dependencies and integrates nicely with the Hex package
manager.
In order to use dependencies, you need to add a :deps key
to your project configuration. We often extract the list of dependencies
into its own function:
defmodule MyApp.MixProject do
 use Mix.Project

 def project do
 [
 app: :my_app,
 version: "1.0.0",
 deps: deps()
]
 end

 defp deps do
 [
 {:ecto, "~> 2.0"},
 {:plug, github: "elixir-lang/plug"}
]
 end
end
You can run mix help deps to learn more about dependencies in Mix.

 Environments

Mix supports different environments. Environments allow developers
to prepare and organize their project specifically for different
scenarios. By default, Mix provides three environments:
	:dev - the default environment
	:test - the environment mix test runs on
	:prod - the environment your dependencies run on

The environment can be changed via the command line by setting
the MIX_ENV environment variable, for example:
$ MIX_ENV=prod mix run server.exs

You can also specify that certain dependencies are available only for
certain environments:
{:some_test_dependency, "~> 1.0", only: :test}
When running Mix via the command line, you can configure the default
environment or the preferred environment per task via the def cli
function in your mix.exs. For example:
def cli do
 [
 default_env: :local,
 preferred_envs: [docs: :docs]
]
end
The environment can be read via Mix.env/0.

 Targets

Besides environments, Mix supports targets. Targets are useful when a
project needs to compile to different architectures and some of the
dependencies are only available to some of them. By default, the target
is :host but it can be set via the MIX_TARGET environment variable.
When running Mix via the command line, you can configure the default
target or the preferred target per task via the def cli function
in your mix.exs. For example:
def cli do
 [
 default_target: :local,
 preferred_targets: [docs: :docs]
]
end
The target can be read via Mix.target/0.

 Configuration

Mix allows you configure the application environment of your application
and of your dependencies. See the Application module to learn more about
the application environment. On this section, we will focus on how to configure
it at two distinct moments: build-time and runtime.
Avoiding the application environment
The application environment is discouraged for libraries. See Elixir's
Library Guidelines for
more information.

 Build-time configuration

Whenever you invoke a mix command, Mix loads the configuration
in config/config.exs, if said file exists. It is common for the
config/config.exs file itself to import other configuration based
on the current MIX_ENV, such as config/dev.exs, config/test.exs,
and config/prod.exs, by calling Config.import_config/1:
import Config
import_config "#{config_env()}.exs"
We say config/config.exs and all imported files are build-time
configuration as they are evaluated whenever you compile your code.
In other words, if your configuration does something like:
import Config
config :my_app, :secret_key, System.fetch_env!("MY_APP_SECRET_KEY")
The :secret_key key under :my_app will be computed on the host
machine before your code compiles. This can be an issue if the machine
compiling your code does not have access to all environment variables
used to run your code, as loading the config above will fail due to the
missing environment variable. Furthermore, even if the environment variable
is set, changing the environment variable will require a full recompilation
of your application by calling mix compile --force (otherwise your project
won't start). Luckily, Mix also provides runtime configuration, which is
preferred in such cases and we will see next.

 Runtime configuration

To enable runtime configuration in your release, all you need to do is
to create a file named config/runtime.exs:
import Config
config :my_app, :secret_key, System.fetch_env!("MY_APP_SECRET_KEY")
This file is executed whenever your project runs. If you assemble
a release with mix release, it also executes every time your release
starts.

 Aliases

Aliases are shortcuts or tasks specific to the current project.
In the Mix.Task section, we have defined a task that would be
available to everyone using our project as a dependency. What if
we wanted the task to only be available for our project? Just
define an alias:
defmodule MyApp.MixProject do
 use Mix.Project

 def project do
 [
 app: :my_app,
 version: "1.0.0",
 aliases: aliases()
]
 end

 defp aliases do
 [
 c: "compile",
 hello: &hello/1,
 paid_task: &paid_task/1
]
 end

 defp hello(_) do
 Mix.shell().info("Hello world")
 end

 defp paid_task(_) do
 Mix.Task.run("paid.task", [
 "first_arg",
 "second_arg",
 "--license-key",
 System.fetch_env!("SOME_LICENSE_KEY")
])
 end
end
In the example above, we have defined three aliases. One is mix c
which is a shortcut for mix compile. Another is named
mix hello and the third is named mix paid_task, which executes
the code inside a custom function to invoke the paid.task task
with several arguments, including one pulled from an environment
variable.
Aliases may also be lists, specifying multiple tasks to be run
consecutively:
[all: [&hello/1, "deps.get --only #{Mix.env()}", "compile"]]
In the example above, we have defined an alias named mix all,
that prints "Hello world", then fetches dependencies specific
to the current environment, and compiles the project.
Aliases can also be used to augment existing tasks. Let's suppose
you want to augment mix clean to clean another directory Mix does
not know about:
[clean: ["clean", &clean_extra/1]]
Where &clean_extra/1 would be a function in your mix.exs
with extra cleanup logic.
If the alias is overriding an existing task, the arguments given
to the alias will be forwarded to the original task in order to
preserve semantics. Otherwise arguments given to the alias are
appended to the arguments of the last task in the list.
Another use case of aliases is to run Elixir scripts and shell
commands, for example:
priv/hello1.exs
IO.puts("Hello One")

priv/hello2.exs
IO.puts("Hello Two")

priv/world.sh
#!/bin/sh
echo "world!"

mix.exs
defp aliases do
 [
 some_alias: ["hex.info", "run priv/hello1.exs", "cmd priv/world.sh"]
]
end
In the example above we have created the alias some_alias that will
run the task mix hex.info, then mix run to run an Elixir script,
then mix cmd to execute a command line shell script. This shows how
powerful aliases mixed with Mix tasks can be.
One commit pitfall of aliases comes when trying to invoke the same task
multiple times. Mix tasks are designed to run only once. This prevents
the same task from being executed multiple times. For example, if there
are several tasks depending on mix compile, the code will be compiled
only once.
Similary, mix format can only be invoked once. So if you have an alias
that attempts to invoke mix format multiple times, it won't work unless
it is explicitly reenabled using Mix.Task.reenable/1:
another_alias: [
 "format --check-formatted priv/hello1.exs",
 "cmd priv/world.sh",
 fn _ -> Mix.Task.reenable("format") end,
 "format --check-formatted priv/hello2.exs"
]
Some tasks are automatically reenabled though, as they are expected to
be invoked multiple times, such as: mix cmd, mix do, mix xref, etc.
Finally, aliases defined in the current project do not affect its
dependencies and aliases defined in dependencies are not accessible
from the current project, with the exception of umbrella projects.
Umbrella projects will run the aliases of its children when the
umbrella project itself does not define said alias and there is no
task with said name.

 Environment variables

Several environment variables can be used to modify Mix's behaviour.
Mix responds to the following variables:
	MIX_ARCHIVES - specifies the directory into which the archives should be installed
(default: ~/.mix/archives)

	MIX_BUILD_PATH - sets the project Mix.Project.build_path/0 config.
This option must always point to a subdirectory inside a temporary directory.
For instance, never "/tmp" or "_build" but "_build/PROD" or "/tmp/PROD", as
required by Mix. This environment variable is used mostly by external build
tools. For your CI servers, you likely want to use MIX_BUILD_ROOT below.

	MIX_BUILD_ROOT - sets the root directory where build artifacts should be
written to. For example, "_build". If MIX_BUILD_PATH is set, this option
is ignored.

	MIX_DEBUG - outputs debug information about each task before running it

	MIX_DEPS_PATH - sets the project Mix.Project.deps_path/0 config for the
current project (default: deps)

	MIX_ENV - specifies which environment should be used. See Environments

	MIX_EXS - changes the full path to the mix.exs file

	MIX_HOME - path to Mix's home directory, stores configuration files and scripts used by Mix
(default: ~/.mix)

	MIX_INSTALL_DIR - (since v1.12.0) specifies directory where Mix.install/2 keeps
 install cache

	MIX_PATH - appends extra code paths

	MIX_PROFILE - a list of comma-separated Mix tasks to profile the time spent on
functions by the process running the task

	MIX_QUIET - does not print information messages to the terminal

	MIX_REBAR3 - path to rebar3 command that overrides the one Mix installs
(default: ~/.mix/rebar3)

	MIX_TARGET - specifies which target should be used. See Targets

	MIX_XDG - asks Mix to follow the XDG Directory Specification
for its home directory and configuration files. This behaviour needs to
be opt-in due to backwards compatibility. MIX_HOME has higher preference
than MIX_XDG. If none of the variables are set, the default directory
~/.mix will be used

Environment variables that are not meant to hold a value (and act basically as
flags) should be set to either 1 or true, for example:
$ MIX_DEBUG=1 mix compile

 Summary

 Functions

 compilers()

 Returns the default compilers used by Mix.

 debug(debug)

 Sets Mix debug mode.

 debug?()

 Returns true if Mix is in debug mode, false otherwise.

 ensure_application!(app)

 Ensures the given application from Erlang/OTP or Elixir and its dependencies
are available in the path.

 env()

 Returns the current Mix environment.

 env(env)

 Changes the current Mix environment to env.

 install(deps, opts \\ [])

 Installs and starts dependencies.

 install_project_dir()

 Returns the directory where the current Mix.install/2 project
resides.

 installed?()

 Returns whether Mix.install/2 was called in the current node.

 path_for(atom)

 The path for local archives or escripts.

 raise(message)

 Raises a Mix error that is nicely formatted, defaulting to exit status 1.

 raise(message, opts)

 Raises a Mix error that is nicely formatted.

 shell()

 Returns the current shell.

 shell(shell)

 Sets the current shell.

 target()

 Returns the Mix target.

 target(target)

 Changes the current Mix target to target.

 Functions

 Link to this function

 compilers()

 View Source

 @spec compilers() :: [atom()]

Returns the default compilers used by Mix.
It can be used in your mix.exs to prepend or
append new compilers to Mix:
def project do
 [compilers: Mix.compilers() ++ [:foo, :bar]]
end

 Link to this function

 debug(debug)

 View Source

 @spec debug(boolean()) :: :ok

Sets Mix debug mode.

 Link to this function

 debug?()

 View Source

 @spec debug?() :: boolean()

Returns true if Mix is in debug mode, false otherwise.

 Link to this function

 ensure_application!(app)

 View Source

 (since 1.15.0)

Ensures the given application from Erlang/OTP or Elixir and its dependencies
are available in the path.
Generally speaking, you should list the Erlang application dependencies under
the :extra_applications section of your mix.exs. This must only be used by
Mix tasks which wish to avoid depending on Erlang/Elixir for certain reasons.
This function does not start the given applications.

 Link to this function

 env()

 View Source

 @spec env() :: atom()

Returns the current Mix environment.
This function should not be used at runtime in application code (as opposed
to infrastructure and build code like Mix tasks). Mix is a build tool and may
not be available after the code is compiled (for example in a release).
To differentiate the program behavior depending on the environment, it is
recommended to use application environment through Application.get_env/3.
Proper configuration can be set in config files, often per-environment
(see the Config module for more information).

 Link to this function

 env(env)

 View Source

 @spec env(atom()) :: :ok

Changes the current Mix environment to env.
Be careful when invoking this function as any project
configuration won't be reloaded.
This function should not be used at runtime in application code
(see env/0 for more information).

 Link to this function

 install(deps, opts \\ [])

 View Source

 (since 1.12.0)

Installs and starts dependencies.
The given deps should be in the same format as defined in a regular Mix
project. See mix help deps for more information. As a shortcut, an atom
can be given as dependency to mean the latest version. In other words,
specifying :decimal is the same as {:decimal, ">= 0.0.0"}.
After each successful installation, a given set of dependencies is cached
so starting another VM and calling Mix.install/2 with the same dependencies
will avoid unnecessary downloads and compilations. The location of the cache
directory can be controlled using the MIX_INSTALL_DIR environment variable.
This function can only be called outside of a Mix project and only with the
same dependencies in the given VM.

 Options

	:force - if true, runs with empty install cache. This is useful when you want
to update your dependencies or your install got into an inconsistent state.
To use this option, you can also set the MIX_INSTALL_FORCE environment variable.
(Default: false)

	:verbose - if true, prints additional debugging information
(Default: false)

	:consolidate_protocols - if true, runs protocol
consolidation via the mix compile.protocols task (Default: true)

	:elixir - if set, ensures the current Elixir version matches the given
version requirement (Default: nil)

	:system_env (since v1.13.0) - a list or a map of system environment variable
names with respective values as binaries. The system environment is made part
of the Mix.install/2 cache, so different configurations will lead to different apps

	:config (since v1.13.0) - a keyword list of keyword lists of compile-time
configuration. The configuration is part of the Mix.install/2 cache, so
different configurations will lead to different apps. For this reason, you
want to minimize the amount of configuration set through this option.
Use Application.put_all_env/2 for setting other runtime configuration.

	:config_path (since v1.14.0) - path to a configuration file. If a runtime.exs
file exists in the same directory as the given path, it is loaded too.

	:lockfile (since v1.14.0) - path to a lockfile to be used as a basis of
dependency resolution.

	:start_applications (since v1.15.3) - if true, ensures that installed app
and its dependencies are started after install (Default: true)

 Examples

Installing :decimal and :jason:
Mix.install([
 :decimal,
 {:jason, "~> 1.0"}
])
Installing :nx and :exla, and configuring the underlying applications
and environment variables:
Mix.install(
 [:nx, :exla],
 config: [
 nx: [default_backend: EXLA]
],
 system_env: [
 XLA_TARGET: "cuda111"
]
)
Installing a Mix project as a path dependency along with its configuration
and deps:
$ git clone https://github.com/hexpm/hexpm /tmp/hexpm
$ cd /tmp/hexpm && mix setup

Mix.install(
 [
 {:hexpm, path: "/tmp/hexpm", env: :dev},
],
 config_path: "/tmp/hexpm/config/config.exs",
 lockfile: "/tmp/hexpm/mix.lock"
)

Hexpm.Repo.query!("SELECT COUNT(1) from packages")
#=> ...
The example above can be simplified by passing the application
name as an atom for :config_path and :lockfile:
Mix.install(
 [
 {:hexpm, path: "/tmp/hexpm", env: :dev},
],
 config_path: :hexpm,
 lockfile: :hexpm
)

 Limitations

There is one limitation to Mix.install/2, which is actually an Elixir
behaviour. If you are installing a dependency that defines a struct or
macro, you cannot use the struct or macro immediately after the install
call. For example, this won't work:
Mix.install([:decimal])
%Decimal{} = Decimal.new(42)
That's because Elixir first expands all structs and all macros, and then
it executes the code. This means that, by the time Elixir tries to expand
the %Decimal{} struct, the dependency has not been installed yet.
Luckily this has a straightforward solution, which is move the code to
inside a module:
Mix.install([:decimal])

defmodule Script do
 def run do
 %Decimal{} = Decimal.new(42)
 end
end

Script.run()
The contents inside defmodule will only be expanded and executed
after Mix.install/2 runs, which means that any struct, macros,
and imports will be correctly handled.

 Environment variables

The MIX_INSTALL_DIR environment variable configures the directory that
caches all Mix.install/2.
The MIX_INSTALL_FORCE is available since Elixir v1.13.0 and forces
Mix.install/2 to discard any previously cached entry of the current install.
The MIX_INSTALL_RESTORE_PROJECT_DIR environment variable may be specified
since Elixir v1.16.2. It should point to a previous installation directory,
which can be obtained with Mix.install_project_dir/0 (after calling Mix.install/2).
Using a restore dir may speed up the installation, since matching dependencies
do not need be refetched nor recompiled. This environment variable is ignored
if :force is enabled.

 Link to this function

 install_project_dir()

 View Source

 (since 1.16.2)

 @spec install_project_dir() :: Path.t() | nil

Returns the directory where the current Mix.install/2 project
resides.

 Link to this function

 installed?()

 View Source

 (since 1.13.0)

Returns whether Mix.install/2 was called in the current node.

 Link to this function

 path_for(atom)

 View Source

 (since 1.10.0)

 @spec path_for(:archives | :escripts) :: String.t()

The path for local archives or escripts.

 Link to this function

 raise(message)

 View Source

 @spec raise(binary()) :: no_return()

Raises a Mix error that is nicely formatted, defaulting to exit status 1.

 Link to this function

 raise(message, opts)

 View Source

 (since 1.12.3)

 @spec raise(binary(), [{:exit_status, non_neg_integer()}]) :: no_return()

Raises a Mix error that is nicely formatted.

 Options

	:exit_status - defines exit status, defaults to 1

 Link to this function

 shell()

 View Source

 @spec shell() :: module()

Returns the current shell.
shell/0 can be used as a wrapper for the current shell. It contains
conveniences for requesting information from the user, printing to the
shell and so forth. The Mix shell is swappable (see shell/1), allowing
developers to use a test shell that simply sends messages to the current
process instead of performing IO (see Mix.Shell.Process).
By default, this returns Mix.Shell.IO.

 Examples

Mix.shell().info("Preparing to do something dangerous...")

if Mix.shell().yes?("Are you sure?") do
 # do something dangerous
end

 Link to this function

 shell(shell)

 View Source

 @spec shell(module()) :: :ok

Sets the current shell.
As an argument you may pass Mix.Shell.IO, Mix.Shell.Process,
Mix.Shell.Quiet, or any module that implements the Mix.Shell
behaviour.
After calling this function, shell becomes the shell that is
returned by shell/0.

 Examples

iex> Mix.shell(Mix.Shell.IO)
:ok
You can use shell/0 and shell/1 to temporarily switch shells,
for example, if you want to run a Mix Task that normally produces
a lot of output:
shell = Mix.shell()
Mix.shell(Mix.Shell.Quiet)

try do
 Mix.Task.run("noisy.task")
after
 Mix.shell(shell)
end

 Link to this function

 target()

 View Source

 @spec target() :: atom()

Returns the Mix target.

 Link to this function

 target(target)

 View Source

 @spec target(atom()) :: :ok

Changes the current Mix target to target.
Be careful when invoking this function as any project
configuration won't be reloaded.

Mix.Generator

Conveniences for working with paths and generating content.

 Summary

 Functions

 copy_file(source, target, options \\ [])

 Copies source to target.

 copy_template(source, target, assigns, options \\ [])

 Evaluates and copy templates at source to target.

 create_directory(path, options \\ [])

 Creates a directory if one does not exist yet.

 create_file(path, contents, opts \\ [])

 Creates a file with the given contents.

 embed_template(name, contents)

 Embeds a template given by contents into the current module.

 embed_text(name, contents)

 Embeds a text given by contents into the current module.

 overwrite?(path)

 Prompts the user to overwrite the file if it exists.

 overwrite?(path, contents)

 Prompts the user to overwrite the file if it exists.

 Functions

 Link to this function

 copy_file(source, target, options \\ [])

 View Source

 (since 1.9.0)

 @spec copy_file(Path.t(), Path.t(), keyword()) :: boolean()

Copies source to target.
If target already exists and the contents are not the same,
it asks for user confirmation.

 Options

	:force - forces copying without a shell prompt
	:quiet - does not log command output

 Examples

iex> Mix.Generator.copy_file("source/gitignore", ".gitignore")
* creating .gitignore
true

 Link to this function

 copy_template(source, target, assigns, options \\ [])

 View Source

 (since 1.9.0)

 @spec copy_template(Path.t(), Path.t(), keyword(), keyword()) :: boolean()

Evaluates and copy templates at source to target.
The template in source is evaluated with the given assigns.
If target already exists and the contents are not the same,
it asks for user confirmation.

 Options

	:force - forces copying without a shell prompt
	:quiet - does not log command output

 Examples

iex> assigns = [project_path: "/Users/joe/newproject"]
iex> Mix.Generator.copy_template("source/gitignore", ".gitignore", assigns)
* creating .gitignore
true

 Link to this function

 create_directory(path, options \\ [])

 View Source

 @spec create_directory(
 Path.t(),
 keyword()
) :: true

Creates a directory if one does not exist yet.
This function does nothing if the given directory already exists; in this
case, it still logs the directory creation.

 Options

	:quiet - does not log command output

 Examples

iex> Mix.Generator.create_directory("path/to/dir")
* creating path/to/dir
true

 Link to this function

 create_file(path, contents, opts \\ [])

 View Source

 @spec create_file(Path.t(), iodata(), keyword()) :: boolean()

Creates a file with the given contents.
If the file already exists and the contents are not the same,
it asks for user confirmation.

 Options

	:force - forces creation without a shell prompt
	:quiet - does not log command output

 Examples

iex> Mix.Generator.create_file(".gitignore", "_build\ndeps\n")
* creating .gitignore
true

 Link to this macro

 embed_template(name, contents)

 View Source

 (macro)

Embeds a template given by contents into the current module.
It will define a private function with the name followed by
_template that expects assigns as arguments.
This function must be invoked passing a keyword list.
Each key in the keyword list can be accessed in the
template using the @ macro.
For more information, check EEx.SmartEngine.

 Examples

defmodule Mix.Tasks.MyTask do
 require Mix.Generator
 Mix.Generator.embed_template(:log, "Log: <%= @log %>")
end

 Link to this macro

 embed_text(name, contents)

 View Source

 (macro)

Embeds a text given by contents into the current module.
It will define a private function with the name followed by
_text that expects no arguments.

 Examples

defmodule Mix.Tasks.MyTask do
 require Mix.Generator
 Mix.Generator.embed_text(:error, "There was an error!")
end

 Link to this function

 overwrite?(path)

 View Source

 (since 1.9.0)

 @spec overwrite?(Path.t()) :: boolean()

Prompts the user to overwrite the file if it exists.
Returns false if the file exists and the user forbade
to override it. Returns true otherwise.

 Link to this function

 overwrite?(path, contents)

 View Source

 (since 1.9.0)

 @spec overwrite?(Path.t(), iodata()) :: boolean()

Prompts the user to overwrite the file if it exists.
The contents are compared to avoid asking the user to
override if the contents did not change. Returns false
if the file exists and the content is the same or the
user forbade to override it. Returns true otherwise.

Mix.Project

Defines and manipulates Mix projects.
A Mix project is defined by calling use Mix.Project in a module, usually
placed in mix.exs:
defmodule MyApp.MixProject do
 use Mix.Project

 def project do
 [
 app: :my_app,
 version: "1.0.0"
]
 end
end
use Mix.Project
When you use Mix.Project, it notifies Mix that a new project
has been defined, so all Mix tasks use your module as a starting
point.

 Configuration

In order to configure Mix, the module that uses Mix.Project should export
a project/0 function that returns a keyword list representing configuration
for the project.
This configuration can be read using Mix.Project.config/0. Note that
config/0 won't fail if a project is not defined; this allows many Mix tasks
to work without a project.
If a task requires a project to be defined or needs to access a
special function within the project, the task can call Mix.Project.get!/0
which fails with Mix.NoProjectError in the case a project is not
defined.
There isn't a comprehensive list of all the options that can be returned by
project/0 since many Mix tasks define their own options that they read from
this configuration. For example, look at the "Configuration" section in the
documentation for the Mix.Tasks.Compile task.
These are a few options that are not used by just one Mix task (and will thus
be documented here):
	:build_per_environment - if true, builds will be per-environment. If
false, builds will go in _build/shared regardless of the Mix
environment. Defaults to true.

	:aliases - a list of task aliases. For more information, check out the
"Aliases" section in the documentation for the Mix module. Defaults to
[].

	:config_path - a string representing the path of the main config
file. See config_files/0 for more information. Defaults to
"config/config.exs".

	:deps - a list of dependencies of this project. Refer to the
documentation for the Mix.Tasks.Deps task for more information. Defaults
to [].

	:deps_path - directory where dependencies are stored. Also see
deps_path/1. Defaults to "deps".

	:lockfile - the name of the lockfile used by the mix deps.* family of
tasks. Defaults to "mix.lock".

Mix tasks may require their own configuration inside def project. For example,
check the Mix.Tasks.Compile task and all the specific compiler tasks
(such as Mix.Tasks.Compile.Elixir or Mix.Tasks.Compile.Erlang).
Note that different tasks may share the same configuration option. For example,
the :erlc_paths configuration is used by mix compile.erlang, mix compile.yecc,
and other tasks.

 CLI configuration

Mix is most often invoked from the command line. For this purpose, you may define
a specific cli/0 function which customizes default values when executed from
the CLI. For example:
def cli do
 [
 default_task: "phx.server",
 preferred_envs: [docs: :docs]
]
end
The example above sets the default task (used by iex -S mix and mix) to
phx.server. It also sets the default environment for the "mix docs" task to
be "docs".
The following CLI configuration are available:
	:default_env - the default environment to use when none is given
and MIX_ENV is not set

	:default_target - the default target to use when none is given
and MIX_TARGET is not set

	:default_task - the default task to invoke when none is given

	:preferred_envs - a keyword list of {task, env} tuples where task
is the task name as an atom (for example, :"deps.get") and env is the
preferred environment (for example, :test)

	:preferred_targets - a keyword list of {task, target} tuples where
task is the task name as an atom (for example, :test) and target
is the preferred target (for example, :host)

 Erlang projects

Mix can be used to manage Erlang projects that don't have any Elixir code. To
ensure Mix tasks work correctly for an Erlang project, language: :erlang has
to be part of the configuration returned by project/0. This setting also
makes sure Elixir is not added as a dependency to the generated .app file or
to the escript generated with mix escript.build, and so on.

 Invoking this module

This module contains many functions that return project information and
metadata. However, since Mix is not included nor configured during releases,
we recommend using the functions in this module only inside Mix tasks.
If you need to configure your own app, consider using the application
environment instead. For example, don't do this:
def some_config do
 Mix.Project.config()[:some_config]
end
Nor this:
@some_config Mix.Project.config()[:some_config]
Instead, do this:
def some_config do
 Application.get_env(:my_app, :some_config)
end
Or this:
@some_config Application.compile_env(:my_app, :some_config)

 Summary

 Functions

 app_path(config \\ config())

 Returns the application path inside the build.

 apps_paths(config \\ config())

 Returns a map with the umbrella child applications paths.

 build_path(config \\ config())

 Returns the build path for the given project.

 build_structure(config \\ config(), opts \\ [])

 Builds the project structure for the given application.

 clear_deps_cache()

 Clears the dependency for the current environment.

 compile_path(config \\ config())

 Returns the paths the given project compiles to.

 config()

 Returns the project configuration.

 config_files()

 Returns a list of project configuration files for this project.

 config_mtime()

 Returns the latest modification time from config files.

 consolidation_path(config \\ config())

 Returns the path where protocol consolidations are stored.

 deps_apps()

 Returns all dependencies app names.

 deps_path(config \\ config())

 Returns the path where dependencies are stored for the given project.

 deps_paths(opts \\ [])

 Returns the full path of all dependencies as a map.

 deps_scms(opts \\ [])

 Returns the SCMs of all dependencies as a map.

 deps_tree(opts \\ [])

 Returns the dependencies of all dependencies as a map.

 ensure_structure(config \\ config(), opts \\ [])

 Ensures the project structure for the given project exists.

 get()

 Retrieves the current project if there is one.

 get!()

 Same as get/0, but raises an exception if there is no current project.

 in_project(app, path, post_config \\ [], fun)

 Runs the given fun inside the given project.

 load_paths(config \\ config())

 deprecated

 manifest_path(config \\ config())

 Returns the path where manifests are stored.

 parent_umbrella_project_file()

 Returns the path to the file that defines the parent umbrella project, if one.

 project_file()

 Returns the path to the file that defines the current project.

 umbrella?(config \\ config())

 Returns true if config is the configuration for an umbrella project.

 Functions

 Link to this function

 app_path(config \\ config())

 View Source

 @spec app_path(keyword()) :: Path.t()

Returns the application path inside the build.
The returned path will be expanded.

 Examples

If your project defines the app my_app:
Mix.Project.app_path()
#=> "/path/to/project/_build/shared/lib/my_app"

 Link to this function

 apps_paths(config \\ config())

 View Source

 (since 1.4.0)

 @spec apps_paths(keyword()) :: %{optional(atom()) => Path.t()} | nil

Returns a map with the umbrella child applications paths.
These paths are based on the :apps_path and :apps configurations.
If the given project configuration identifies an umbrella project, the return
value is a map of app => path where app is a child app of the umbrella and
path is its path relative to the root of the umbrella project.
If the given project configuration does not identify an umbrella project,
nil is returned.

 Examples

Mix.Project.apps_paths()
#=> %{my_app1: "apps/my_app1", my_app2: "apps/my_app2"}

 Link to this function

 build_path(config \\ config())

 View Source

 @spec build_path(keyword()) :: Path.t()

Returns the build path for the given project.
The build path is built based on the :build_path configuration
(which defaults to "_build") and a subdirectory. The subdirectory
is built based on two factors:
	If :build_per_environment is set, the subdirectory is the value
of Mix.env/0 (which can be set via MIX_ENV). Otherwise it is
set to "shared".

	If Mix.target/0 is set (often via the MIX_TARGET environment
variable), it will be used as a prefix to the subdirectory.

Finally, the environment variables MIX_BUILD_ROOT and MIX_BUILD_PATH
can be used to change the result of this function. MIX_BUILD_ROOT
overwrites only the root "_build" directory while keeping the
subdirectory as is. It may be useful to change it for caching reasons,
typically during Continuous Integration (CI). MIX_BUILD_PATH overrides
the build path altogether and it typically used by other build tools
that invoke the mix CLI.
Naming differences
Ideally the configuration option :build_path would be called
:build_root, as it would fully mirror the environment variable.
However, its name is preserved for backwards compatibility.

 Examples

Mix.Project.build_path()
#=> "/path/to/project/_build/shared"
If :build_per_environment is set to true, it will create a new build per
environment:
Mix.env()
#=> :dev
Mix.Project.build_path()
#=> "/path/to/project/_build/dev"

 Link to this function

 build_structure(config \\ config(), opts \\ [])

 View Source

 @spec build_structure(keyword(), keyword()) :: :ok

Builds the project structure for the given application.

 Options

	:symlink_ebin - symlink ebin instead of copying it

 Link to this function

 clear_deps_cache()

 View Source

 (since 1.7.0)

 @spec clear_deps_cache() :: :ok

Clears the dependency for the current environment.
Useful when dependencies need to be reloaded due to change of global state.
For example, Nerves uses this function to force all dependencies to be
reloaded after it updates the system environment. It goes roughly like
this:
	Nerves fetches all dependencies and looks for the system specific deps
	Once the system specific dep is found, it loads it alongside env vars
	Nerves then clears the cache, forcing dependencies to be loaded again
	Dependencies are loaded again, now with an updated env environment

 Link to this function

 compile_path(config \\ config())

 View Source

 @spec compile_path(keyword()) :: Path.t()

Returns the paths the given project compiles to.
If no configuration is given, the one for the current project will be used.
The returned path will be expanded.

 Examples

If your project defines the app my_app:
Mix.Project.compile_path()
#=> "/path/to/project/_build/dev/lib/my_app/ebin"

 Link to this function

 config()

 View Source

 @spec config() :: keyword()

Returns the project configuration.
If there is no project defined, it still returns a keyword
list with default values. This allows many Mix tasks to work
without the need for an underlying project.
Note this configuration is cached once the project is
pushed onto the stack. Calling it multiple times won't
cause it to be recomputed.
Do not use Mix.Project.config/0 to find the runtime configuration.
Use it only to configure aspects of your project (like
compilation directories) and not your application runtime.

 Link to this function

 config_files()

 View Source

 @spec config_files() :: [Path.t()]

Returns a list of project configuration files for this project.
This function is usually used in compilation tasks to trigger
a full recompilation whenever such configuration files change.
It returns the lock manifest, and all config files in the config
directory that do not start with a leading period (for example,
.my_config.exs).
Note: before Elixir v1.13.0, the mix.exs file was also included
as a config file, but since then it has been moved to its own
function called project_file/0.

 Link to this function

 config_mtime()

 View Source

 (since 1.7.0)

 @spec config_mtime() :: posix_mtime when posix_mtime: integer()

Returns the latest modification time from config files.
This function is usually used in compilation tasks to trigger
a full recompilation whenever such configuration files change.
For this reason, the mtime is cached to avoid file system lookups.
Note: before Elixir v1.13.0, the mix.exs file was also included
in the mtimes, but not anymore. You can compute its modification
date by calling project_file/0.

 Link to this function

 consolidation_path(config \\ config())

 View Source

 @spec consolidation_path(keyword()) :: Path.t()

Returns the path where protocol consolidations are stored.
The returned path will be expanded.

 Examples

If your project defines the app my_app:
Mix.Project.consolidation_path()
#=> "/path/to/project/_build/dev/lib/my_app/consolidated"
Inside umbrellas:
Mix.Project.consolidation_path()
#=> "/path/to/project/_build/dev/consolidated"

 Link to this function

 deps_apps()

 View Source

 (since 1.11.0)

 @spec deps_apps() :: [atom()]

Returns all dependencies app names.
The order they are returned is guaranteed to be sorted
for proper dependency resolution. For example, if A
depends on B, then B will listed before A.

 Link to this function

 deps_path(config \\ config())

 View Source

 @spec deps_path(keyword()) :: Path.t()

Returns the path where dependencies are stored for the given project.
If no configuration is given, the one for the current project is used.
The returned path will be expanded.

 Examples

Mix.Project.deps_path()
#=> "/path/to/project/deps"

 Link to this function

 deps_paths(opts \\ [])

 View Source

 @spec deps_paths(keyword()) :: %{optional(atom()) => Path.t()}

Returns the full path of all dependencies as a map.

 Options

	:depth - only returns dependencies to the depth level,
a depth of 1 will only return top-level dependencies
	:parents - starts the dependency traversal from the
given parents instead of the application root

 Examples

Mix.Project.deps_paths()
#=> %{foo: "deps/foo", bar: "custom/path/dep"}

 Link to this function

 deps_scms(opts \\ [])

 View Source

 (since 1.10.0)

 @spec deps_scms(keyword()) :: %{optional(atom()) => Mix.SCM.t()}

Returns the SCMs of all dependencies as a map.
See Mix.SCM module documentation to learn more about SCMs.

 Options

	:depth - only returns dependencies to the depth level,
a depth of 1 will only return top-level dependencies
	:parents - starts the dependency traversal from the
given parents instead of the application root

 Examples

Mix.Project.deps_scms()
#=> %{foo: Mix.SCM.Path, bar: Mix.SCM.Git}

 Link to this function

 deps_tree(opts \\ [])

 View Source

 (since 1.15.0)

 @spec deps_tree(keyword()) :: %{optional(atom()) => [atom()]}

Returns the dependencies of all dependencies as a map.

 Options

	:depth - only returns dependencies to the depth level,
a depth of 1 will only return top-level dependencies
	:parents - starts the dependency traversal from the
given parents instead of the application root

 Examples

Mix.Project.deps_tree()
#=> %{foo: [:bar, :baz], bar: [], baz: []}

 Link to this function

 ensure_structure(config \\ config(), opts \\ [])

 View Source

 @spec ensure_structure(keyword(), keyword()) :: :ok

Ensures the project structure for the given project exists.
In case it does exist, it is a no-op. Otherwise, it is built.
opts are the same options that can be passed to build_structure/2.

 Link to this function

 get()

 View Source

 @spec get() :: module() | nil

Retrieves the current project if there is one.
If there is no current project, nil is returned. This
may happen in cases there is no mix.exs in the current
directory.
If you expect a project to be defined, i.e., it is a
requirement of the current task, you should call
get!/0 instead.

 Link to this function

 get!()

 View Source

 @spec get!() :: module()

Same as get/0, but raises an exception if there is no current project.
This is usually called by tasks that need additional
functions on the project to be defined. Since such
tasks usually depend on a project being defined, this
function raises a Mix.NoProjectError exception in
case no project is available.

 Link to this function

 in_project(app, path, post_config \\ [], fun)

 View Source

 @spec in_project(atom(), Path.t(), keyword(), (module() -> result)) :: result
when result: term()

Runs the given fun inside the given project.
This function changes the current working directory and
loads the project at the given directory onto the project
stack.
A post_config can be passed that will be merged into
the project configuration.
fun is called with the module name of the given Mix.Project.
The return value of this function is the return value of fun.

 Examples

Mix.Project.in_project(:my_app, "/path/to/my_app", fn module ->
 "Mix project is: #{inspect(module)}"
end)
#=> "Mix project is: MyApp.MixProject"

 Link to this function

 load_paths(config \\ config())

 View Source

 This function is deprecated. Use Mix.Project.compile_path/1 instead.

 Link to this function

 manifest_path(config \\ config())

 View Source

 @spec manifest_path(keyword()) :: Path.t()

Returns the path where manifests are stored.
By default they are stored in the app path inside
the build directory. Umbrella applications have
the manifest path set to the root of the build directory.
Directories may be changed in future releases.
The returned path will be expanded.

 Examples

If your project defines the app my_app:
Mix.Project.manifest_path()
#=> "/path/to/project/_build/shared/lib/my_app/.mix"

 Link to this function

 parent_umbrella_project_file()

 View Source

 (since 1.15.0)

 @spec parent_umbrella_project_file() :: binary() | nil

Returns the path to the file that defines the parent umbrella project, if one.
The majority of the time, it will point to a mix.exs file.
Returns nil if not inside a project or not inside an umbrella.

 Link to this function

 project_file()

 View Source

 (since 1.13.0)

 @spec project_file() :: binary() | nil

Returns the path to the file that defines the current project.
The majority of the time, it will point to a mix.exs file.
Returns nil if not inside a project.

 Link to this function

 umbrella?(config \\ config())

 View Source

 @spec umbrella?(keyword()) :: boolean()

Returns true if config is the configuration for an umbrella project.
When called with no arguments, tells whether the current project is
an umbrella project.

Mix.Release

Defines the release structure and convenience for assembling releases.

 Summary

 Types

 application()

 mode()

 t()

 Functions

 %Mix.Release{}

 The Mix.Release struct has the following read-only fields

 copy_app(release, app)

 Copies the given application specification into the release.

 copy_ebin(release, source, target)

 Copies the ebin directory at source to target
respecting release options such a :strip_beams.

 copy_erts(release)

 Copies ERTS if the release is configured to do so.

 make_boot_script(release, path, modes, prepend_paths \\ [])

 Makes boot scripts.

 make_cookie(release, path)

 Copies the cookie to the given path.

 make_start_erl(release, path)

 Makes the start_erl.data file with the
ERTS version and release versions.

 make_sys_config(release, sys_config, config_provider_path)

 Makes the sys.config structure.

 rel_templates_path(release, path)

 Finds a template path for the release.

 strip_beam(binary, options \\ [])

 Strips a beam file for a release.

 Types

 Link to this type

 application()

 View Source

 @type application() :: atom()

 Link to this type

 mode()

 View Source

 @type mode() :: :permanent | :transient | :temporary | :load | :none

 Link to this type

 t()

 View Source

 @type t() :: %Mix.Release{
 applications: %{required(application()) => keyword()},
 boot_scripts: %{required(atom()) => [{application(), mode()}]},
 config_providers: [{module(), term()}],
 erts_source: charlist() | nil,
 erts_version: charlist(),
 name: atom(),
 options: keyword(),
 overlays: [String.t()],
 path: String.t(),
 steps: [(t() -> t()) | :assemble, ...],
 version: String.t(),
 version_path: String.t()
}

 Functions

 Link to this function

 %Mix.Release{}

 View Source

 (struct)

The Mix.Release struct has the following read-only fields:
	:name - the name of the release as an atom
	:version - the version of the release as a string
	:path - the path to the release root
	:version_path - the path to the release version inside the release
	:applications - a map of application with their definitions
	:erts_source - the ERTS source as a charlist (or nil)
	:erts_version - the ERTS version as a charlist

The following fields may be modified as long as they keep their defined types:
	:boot_scripts - a map of boot scripts with the boot script name
as key and a keyword list with all applications that are part of
it and their modes as value
	:config_providers - a list of {config_provider, term} tuples where the
first element is a module that implements the Config.Provider behaviour
and term is the value given to it on Config.Provider.init/1
	:options - a keyword list with all other user supplied release options
	:overlays - a list of extra files added to the release. If you have a custom
step adding extra files to a release, you can add these files to the :overlays
field so they are also considered on further commands, such as tar/zip. Each entry
in overlays is the relative path to the release root of each file
	:steps - a list of functions that receive the release and returns a release.
Must also contain the atom :assemble which is the internal assembling step.
May also contain the atom :tar to create a tarball of the release.

 Link to this function

 copy_app(release, app)

 View Source

 @spec copy_app(t(), application()) :: boolean()

Copies the given application specification into the release.
It assumes the application exists in the release.

 Link to this function

 copy_ebin(release, source, target)

 View Source

 @spec copy_ebin(t(), Path.t(), Path.t()) :: boolean()

Copies the ebin directory at source to target
respecting release options such a :strip_beams.

 Link to this function

 copy_erts(release)

 View Source

 @spec copy_erts(t()) :: boolean()

Copies ERTS if the release is configured to do so.
Returns true if the release was copied, false otherwise.

 Link to this function

 make_boot_script(release, path, modes, prepend_paths \\ [])

 View Source

 @spec make_boot_script(t(), Path.t(), [{application(), mode()}], [String.t()]) ::
 :ok | {:error, String.t()}

Makes boot scripts.
It receives a path to the boot file, without extension, such as
releases/0.1.0/start and this command will write start.rel,
start.boot, and start.script to the given path, returning
{:ok, rel_path} or {:error, message}.
The boot script uses the RELEASE_LIB environment variable, which must
be accordingly set with --boot-var and point to the release lib dir.

 Link to this function

 make_cookie(release, path)

 View Source

 @spec make_cookie(t(), Path.t()) :: :ok

Copies the cookie to the given path.
If a cookie option was given, we compare it with
the contents of the file (if any), and ask the user
if they want to override.
If there is no option, we generate a random one
the first time.

 Link to this function

 make_start_erl(release, path)

 View Source

 @spec make_start_erl(t(), Path.t()) :: :ok

Makes the start_erl.data file with the
ERTS version and release versions.

 Link to this function

 make_sys_config(release, sys_config, config_provider_path)

 View Source

 @spec make_sys_config(t(), keyword(), Config.Provider.config_path()) ::
 :ok | {:error, String.t()}

Makes the sys.config structure.
If there are config providers, then a value is injected into
the :elixir application configuration in sys_config to be
read during boot and trigger the providers.
It uses the following release options to customize its behaviour:
	:reboot_system_after_config
	:start_distribution_during_config
	:prune_runtime_sys_config_after_boot

In case there are no config providers, it doesn't change sys_config.

 Link to this function

 rel_templates_path(release, path)

 View Source

 @spec rel_templates_path(t(), Path.t()) :: binary()

Finds a template path for the release.

 Link to this function

 strip_beam(binary, options \\ [])

 View Source

 @spec strip_beam(
 binary(),
 keyword()
) :: {:ok, binary()} | {:error, :beam_lib, term()}

Strips a beam file for a release.
This keeps only significant chunks necessary for the VM operation,
discarding documentation, debug info, compile information and others.
The exact chunks that are kept are not documented and may change in
future versions.

Mix.SCM behaviour

This module provides helper functions and defines the
behaviour required by any source code manager (SCM) used by Mix.

 Summary

 Types

 opts()

 t()

 A module implementing the Mix.SCM behaviour.

 Callbacks

 accepts_options(app, opts)

 This behaviour function receives a keyword list of opts
and should return an updated list in case the SCM consumes
the available options. For example, when a developer specifies
a dependency

 checked_out?(opts)

 This behaviour function returns a boolean if the
dependency is available.

 checkout(opts)

 This behaviour function checks out dependencies.

 equal?(opts1, opts2)

 Receives two options and must return true if they refer to the
same repository. The options are guaranteed to belong to the
same SCM.

 fetchable?()

 Returns a boolean if the dependency can be fetched
or it is meant to be previously available in the
file system.

 format(opts)

 Returns a string representing the SCM. This is used
when printing the dependency and not for inspection,
so the amount of information should be concise and
easy to spot.

 format_lock(opts)

 Returns a string representing the SCM. This is used
when printing the dependency and not for inspection,
so the amount of information should be concise and
easy to spot.

 lock_status(opts)

 This behaviour function checks the status of the lock. In
particular, it checks if the revision stored in the lock
is the same as the repository it is currently in.

 managers(opts)

 Returns the usable managers for the dependency. This can be used
if the SCM has extra knowledge of the dependency, otherwise it
should return an empty list.

 update(opts)

 This behaviour function updates dependencies. It may be
called by deps.get or deps.update.

 Functions

 append(mod)

 Appends the given SCM module to the list of available SCMs.

 available()

 Returns all available SCMs. Each SCM is tried in order
until a matching one is found.

 delete(mod)

 Deletes the given SCM from the list of available SCMs.

 prepend(mod)

 Prepends the given SCM module to the list of available SCMs.

 Types

 Link to this type

 opts()

 View Source

 @type opts() :: keyword()

 Link to this type

 t()

 View Source

 @type t() :: module()

A module implementing the Mix.SCM behaviour.

 Callbacks

 Link to this callback

 accepts_options(app, opts)

 View Source

 @callback accepts_options(app :: atom(), opts()) :: opts() | nil

This behaviour function receives a keyword list of opts
and should return an updated list in case the SCM consumes
the available options. For example, when a developer specifies
a dependency:
{:foo, "0.1.0", github: "foo/bar"}
Each registered SCM will be asked if they consume this dependency,
receiving [github: "foo/bar"] as argument. Since this option makes
sense for the Git SCM, it will return an update list of options
while other SCMs would simply return nil.

 Link to this callback

 checked_out?(opts)

 View Source

 @callback checked_out?(opts()) :: boolean()

This behaviour function returns a boolean if the
dependency is available.

 Link to this callback

 checkout(opts)

 View Source

 @callback checkout(opts()) :: any()

This behaviour function checks out dependencies.
If the dependency is locked, a lock is received in opts
and the repository must be check out at the lock. Otherwise,
no lock is given and the repository can be checked out
to the latest version.
It must return the current lock.

 Link to this callback

 equal?(opts1, opts2)

 View Source

 @callback equal?(opts1 :: opts(), opts2 :: opts()) :: boolean()

Receives two options and must return true if they refer to the
same repository. The options are guaranteed to belong to the
same SCM.

 Link to this callback

 fetchable?()

 View Source

 @callback fetchable?() :: boolean()

Returns a boolean if the dependency can be fetched
or it is meant to be previously available in the
file system.
Local dependencies (i.e. non-fetchable ones) are automatically
recompiled every time the parent project is compiled.

 Link to this callback

 format(opts)

 View Source

 @callback format(opts()) :: String.t()

Returns a string representing the SCM. This is used
when printing the dependency and not for inspection,
so the amount of information should be concise and
easy to spot.

 Link to this callback

 format_lock(opts)

 View Source

 @callback format_lock(opts()) :: String.t() | nil

Returns a string representing the SCM. This is used
when printing the dependency and not for inspection,
so the amount of information should be concise and
easy to spot.
If nil is returned, it means no lock information is available.

 Link to this callback

 lock_status(opts)

 View Source

 @callback lock_status(opts()) :: :mismatch | :outdated | :ok

This behaviour function checks the status of the lock. In
particular, it checks if the revision stored in the lock
is the same as the repository it is currently in.
It may return:
	:mismatch - if the lock doesn't match and we need to
simply move to the latest lock

	:outdated - the repository options are outdated in the
lock and we need to trigger a full update

	:ok - everything is fine

The lock is sent via opts[:lock] but it may not always be
available. In such cases, if the SCM requires a lock, it must
return :mismatch, otherwise simply :ok.
Note the lock may also belong to another SCM and as such, an
structural check is required. A structural mismatch should always
return :outdated.

 Link to this callback

 managers(opts)

 View Source

 @callback managers(opts()) :: [atom()]

Returns the usable managers for the dependency. This can be used
if the SCM has extra knowledge of the dependency, otherwise it
should return an empty list.

 Link to this callback

 update(opts)

 View Source

 @callback update(opts()) :: any()

This behaviour function updates dependencies. It may be
called by deps.get or deps.update.
In the first scenario, a lock is received in opts and
the repository must be updated to the lock. In the second,
no lock is given and the repository can be updated freely.
It must return the current lock.

 Functions

 Link to this function

 append(mod)

 View Source

Appends the given SCM module to the list of available SCMs.

 Link to this function

 available()

 View Source

Returns all available SCMs. Each SCM is tried in order
until a matching one is found.

 Link to this function

 delete(mod)

 View Source

 (since 1.16.2)

Deletes the given SCM from the list of available SCMs.

 Link to this function

 prepend(mod)

 View Source

Prepends the given SCM module to the list of available SCMs.

Mix.Shell behaviour

Defines Mix.Shell contract.

 Summary

 Callbacks

 cmd(command)

 Executes the given command and returns its exit status.

 cmd(command, options)

 Executes the given command and returns its exit status.

 error(message)

 Prints the given ANSI error to the shell.

 info(message)

 Prints the given ANSI message to the shell.

 print_app()

 Prints the current application to the shell if
it was not printed yet.

 prompt(message)

 Prompts the user for input.

 yes?(message)

 Prompts the user for confirmation.

 yes?(message, options)

 Prompts the user for confirmation.

 Functions

 cmd(command, options \\ [], callback)

 Executes the given command as a shell command and
invokes the callback for the streamed response.

 printable_app_name()

 Returns the printable app name.

 Callbacks

 Link to this callback

 cmd(command)

 View Source

 @callback cmd(command :: String.t()) :: integer()

Executes the given command and returns its exit status.
Shortcut for cmd/2 with empty options.

 Link to this callback

 cmd(command, options)

 View Source

 @callback cmd(command :: String.t(), options :: keyword()) :: integer()

Executes the given command and returns its exit status.

 Options

This callback should support the following options:
	:print_app - when false, does not print the app name
when the command outputs something

	:stderr_to_stdout - when false, does not redirect
stderr to stdout

	:quiet - when true, do not print the command output

	:env - environment options to the executed command

	:cd - (since v1.11.0) the directory to run the command in

All the built-in shells support these.

 Link to this callback

 error(message)

 View Source

 @callback error(message :: IO.ANSI.ansidata()) :: :ok

Prints the given ANSI error to the shell.

 Link to this callback

 info(message)

 View Source

 @callback info(message :: IO.ANSI.ansidata()) :: :ok

Prints the given ANSI message to the shell.

 Link to this callback

 print_app()

 View Source

 @callback print_app() :: :ok

Prints the current application to the shell if
it was not printed yet.

 Link to this callback

 prompt(message)

 View Source

 @callback prompt(message :: binary()) :: binary()

Prompts the user for input.

 Link to this callback

 yes?(message)

 View Source

 @callback yes?(message :: binary()) :: boolean()

Prompts the user for confirmation.
Shortcut for yes?/2 with empty options.

 Link to this callback

 yes?(message, options)

 View Source

 @callback yes?(message :: binary(), options :: keyword()) :: boolean()

Prompts the user for confirmation.

 Options

	:default - :yes or :no (the default is :yes)

 Functions

 Link to this function

 cmd(command, options \\ [], callback)

 View Source

 @spec cmd(String.t(), keyword(), (binary() -> term())) ::
 exit_status :: non_neg_integer()

Executes the given command as a shell command and
invokes the callback for the streamed response.
This is most commonly used by shell implementations
but can also be invoked directly.
callback takes the output data of the command. Its
return value is ignored.

 Options

	:cd - (since v1.11.0) the directory to run the command in

	:stderr_to_stdout - redirects stderr to stdout, defaults to true

	:env - a list of environment variables, defaults to []

	:quiet - overrides the callback to no-op

 Link to this function

 printable_app_name()

 View Source

 @spec printable_app_name() :: atom() | nil

Returns the printable app name.
This function returns the current application name,
but only if the application name should be printed.
Calling this function automatically toggles its value
to false until the current project is re-entered. The
goal is to avoid printing the application name
multiple times.

Mix.Shell.IO

This is Mix's default shell.
It simply prints messages to stdio and stderr.

 Summary

 Functions

 cmd(command, opts \\ [])

 Executes the given command and prints its output
to stdout as it comes.

 error(message)

 Prints the given ANSI error to the shell followed by a newline.

 info(message)

 Prints the given ANSI message to the shell followed by a newline.

 print_app()

 Prints the current application to the shell if it
was not printed yet.

 prompt(message)

 Prints a message and prompts the user for input.

 yes?(message, options \\ [])

 Prints a message and asks the user to confirm if they
want to proceed. The user must type and submit one of
"y", "yes", "Y", "YES" or "Yes".

 Functions

 Link to this function

 cmd(command, opts \\ [])

 View Source

Executes the given command and prints its output
to stdout as it comes.

 Link to this function

 error(message)

 View Source

Prints the given ANSI error to the shell followed by a newline.

 Link to this function

 info(message)

 View Source

Prints the given ANSI message to the shell followed by a newline.

 Link to this function

 print_app()

 View Source

Prints the current application to the shell if it
was not printed yet.

 Link to this function

 prompt(message)

 View Source

Prints a message and prompts the user for input.
Input will be consumed until Enter is pressed.

 Link to this function

 yes?(message, options \\ [])

 View Source

Prints a message and asks the user to confirm if they
want to proceed. The user must type and submit one of
"y", "yes", "Y", "YES" or "Yes".
The user may also press Enter; this can be configured
to either accept or reject the prompt. The latter case
may be useful for a potentially dangerous operation that
should require explicit confirmation from the user.

 Options

	:default - (:yes or :no) if :yes pressing Enter
accepts the prompt; if :no pressing Enter rejects
the prompt instead. Defaults to :yes.

 Examples

if Mix.shell().yes?("Are you sure?") do
 # do something...
end

Mix.Shell.Process

Mix shell that uses the current process mailbox for communication.
This module provides a Mix shell implementation that uses
the current process mailbox for communication instead of IO.
As an example, when Mix.shell().info("hello") is called,
the following message will be sent to the calling process:
{:mix_shell, :info, ["hello"]}
This is mainly useful in tests, allowing us to assert
if given messages were received or not instead of performing
checks on some captured IO. There is also a flush/1 function
responsible for flushing all :mix_shell related messages
from the process inbox.

 Examples

The first step is to set the Mix shell to this module:
Mix.shell(Mix.Shell.Process)
Then if your Mix task calls:
Mix.shell().info("hello")
You should be able to receive it in your tests as long as
they run in the same process:
assert_receive {:mix_shell, :info, [msg]}
assert msg == "hello"
You can respond to prompts in tests as well:
send(self(), {:mix_shell_input, :prompt, "Pretty cool"})
Mix.shell().prompt("How cool was that?!")
#=> "Pretty cool"

 Summary

 Functions

 cmd(command, opts \\ [])

 Executes the given command and forwards its messages to
the current process.

 error(message)

 Forwards the error to the current process.

 flush(callback \\ fn x -> x end)

 Flushes all :mix_shell and :mix_shell_input messages from the current process.

 info(message)

 Forwards the message to the current process.

 print_app()

 Prints the current application if it
was not printed yet.

 prompt(message)

 Forwards the message to the current process.

 yes?(message, options \\ [])

 Forwards the message to the current process.

 Functions

 Link to this function

 cmd(command, opts \\ [])

 View Source

Executes the given command and forwards its messages to
the current process.

 Link to this function

 error(message)

 View Source

Forwards the error to the current process.

 Link to this function

 flush(callback \\ fn x -> x end)

 View Source

Flushes all :mix_shell and :mix_shell_input messages from the current process.
If a callback is given, it is invoked for each received message.

 Examples

flush(&IO.inspect/1)

 Link to this function

 info(message)

 View Source

Forwards the message to the current process.

 Link to this function

 print_app()

 View Source

Prints the current application if it
was not printed yet.

 Link to this function

 prompt(message)

 View Source

Forwards the message to the current process.
It also checks the inbox for an input message matching:
{:mix_shell_input, :prompt, value}
If one does not exist, it will abort since there was no shell
process inputs given. value must be a string.

 Examples

The following will answer with "Meg" to the prompt
"What's your name?":
The response is sent before calling prompt/1 so that prompt/1 can read it
send(self(), {:mix_shell_input, :prompt, "Meg"})
Mix.shell().prompt("What's your name?")

 Link to this function

 yes?(message, options \\ [])

 View Source

Forwards the message to the current process.
It also checks the inbox for an input message matching:
{:mix_shell_input, :yes?, value}
If one does not exist, it will abort since there was no shell
process inputs given. value must be true or false.

 Example

Send the response to self() first so that yes?/2 will be able to read it
send(self(), {:mix_shell_input, :yes?, true})
Mix.shell().yes?("Are you sure you want to continue?")

Mix.Shell.Quiet

This is Mix's default shell when the MIX_QUIET environment
variable is set.
It's just like Mix.Shell.IO, but prints far less.

 Summary

 Functions

 cmd(command, opts \\ [])

 Executes the given command quietly without outputting anything.

 error(message)

 Prints the error to the shell followed by a newline.

 info(message)

 Prints nothing to the shell.

 print_app()

 Prints the current application if it
was not printed yet.

 prompt(message)

 Prints a message and prompts the user for input.

 yes?(message, options \\ [])

 Prints a message and asks the user to confirm if they
want to proceed. The user must type and submit one of
"y", "yes", "Y", "YES" or "Yes".

 Functions

 Link to this function

 cmd(command, opts \\ [])

 View Source

Executes the given command quietly without outputting anything.

 Link to this function

 error(message)

 View Source

Prints the error to the shell followed by a newline.

 Link to this function

 info(message)

 View Source

Prints nothing to the shell.

 Link to this function

 print_app()

 View Source

Prints the current application if it
was not printed yet.

 Link to this function

 prompt(message)

 View Source

Prints a message and prompts the user for input.
Input will be consumed until Enter is pressed.

 Link to this function

 yes?(message, options \\ [])

 View Source

Prints a message and asks the user to confirm if they
want to proceed. The user must type and submit one of
"y", "yes", "Y", "YES" or "Yes".
The user may also press Enter; this can be configured
to either accept or reject the prompt. The latter case
may be useful for a potentially dangerous operation that
should require explicit confirmation from the user.

 Options

	:default - (:yes or :no) if :yes pressing Enter
accepts the prompt; if :no pressing Enter rejects
the prompt instead. Defaults to :yes.

Mix.Task behaviour

Provides conveniences for creating, loading, and manipulating Mix tasks.
A Mix task can be defined by use Mix.Task in a module whose name
begins with Mix.Tasks. and which defines the run/1 function.
Typically, task modules live inside the lib/mix/tasks/ directory,
and their file names use dot separators instead of underscores
(e.g. deps.clean.ex) - although ultimately the file name is not
relevant.
For example:
lib/mix/tasks/echo.ex
defmodule Mix.Tasks.Echo do
 @moduledoc "Printed when the user requests `mix help echo`"
 @shortdoc "Echoes arguments"

 use Mix.Task

 @impl Mix.Task
 def run(args) do
 Mix.shell().info(Enum.join(args, " "))
 end
end
The command name will correspond to the portion of the module
name following Mix.Tasks.. For example, a module name of
Mix.Tasks.Deps.Clean corresponds to a task name of deps.clean.
The run/1 function will receive a list of all command line
arguments passed, according to the user's terminal.
For example, if the args in the above echo task were
inspected, you might see something like this:
$ mix echo 'A and B' C --test
["A and B", "C", "--test"]

use Mix.Task
When you use Mix.Task, the Mix.Task module will
set @behaviour Mix.Task and define default values
for the module attributes documented in the section
below.

 Module attributes

You can control some behavior of your Mix task by setting module
attributes. This section documents the available attributes.

 @shortdoc

Define the @shortdoc attribute if you wish to make the task
publicly visible on mix help. Omit this attribute if you do
not want your task to be listed via mix help.

 @moduledoc

The @moduledoc attribute may override @shortdoc. The task
will not appear in mix help if documentation for the entire
module is hidden with @moduledoc false.

 @requirements

If a task has requirements, they can be listed using the
@requirements attribute. Requirements are other Mix
tasks that this task requires to have run. For example:
@requirements ["app.config"]
A task will typically depend on one of the following tasks:
	"loadpaths" - this ensures dependencies are available
and compiled. If you are publishing a task as part of
a library to be used by others, and your task does not
need to interact with the user code in any way, this is
the recommended requirement

	"app.config" - additionally compiles and loads the runtime
configuration for the current project. If you are creating
a task to be used within your application or as part of a
library, which must invoke or interact with the user code,
this is the minimum recommended requirement

	"app.start" - additionally starts the supervision tree of
the current project and its dependencies

 @recursive

Set @recursive true if you want the task to run
on each umbrella child in an umbrella project.

 @preferred_cli_env

Sets the preferred Mix environment for this task. For example,
if your task is meant to be used for testing, you could set
@preferred_cli_env :test

 Documentation

Users can read the documentation for public Mix tasks by
running mix help my_task. The documentation that will be
shown is the @moduledoc of the task's module.

 Summary

 Types

 task_module()

 task_name()

 Callbacks

 run(command_line_args)

 A task needs to implement run which receives
a list of command line args.

 Functions

 alias?(task)

 Checks if the given task name is an alias.

 all_modules()

 Returns all loaded task modules.

 clear()

 Clears all invoked tasks, allowing them to be reinvoked.

 get(task)

 Receives a task name and returns the corresponding task module if one exists.

 get!(task)

 Receives a task name and retrieves the corresponding task module.

 load_all()

 Loads all tasks in all code paths.

 load_tasks(dirs)

 Loads all tasks in the given paths.

 moduledoc(module)

 Gets the moduledoc for the given task module.

 preferred_cli_env(task)

 deprecated

 Available for backwards compatibility.

 recursing?()

 Indicates if the current task is recursing.

 recursive(module)

 Checks if the task should be run recursively for all sub-apps in
umbrella projects.

 reenable(task)

 Reenables a given task so it can be executed again down the stack.

 requirements(module)

 Gets the list of requirements for the given task.

 rerun(task, args \\ [])

 Reruns task with the given arguments.

 run(task, args \\ [])

 Conditionally runs the task (or alias) with the given args.

 run_in_apps(task, apps, args \\ [])

 Runs recursive tasks in the specified list of children apps for umbrella projects.

 shortdoc(module)

 Gets the shortdoc for the given task module.

 task?(module)

 Returns true if given module is a task.

 task_name(module)

 Returns the task name for the given module.

 Types

 Link to this type

 task_module()

 View Source

 @type task_module() :: atom()

 Link to this type

 task_name()

 View Source

 @type task_name() :: String.t() | atom()

 Callbacks

 Link to this callback

 run(command_line_args)

 View Source

 @callback run(command_line_args :: [binary()]) :: any()

A task needs to implement run which receives
a list of command line args.

 Functions

 Link to this function

 alias?(task)

 View Source

 @spec alias?(task_name()) :: boolean()

Checks if the given task name is an alias.
Returns false if the given name is not an alias or if it is not a task.
For more information about task aliasing, take a look at the
"Aliases" section in the
docs for Mix.

 Link to this function

 all_modules()

 View Source

 @spec all_modules() :: [task_module()]

Returns all loaded task modules.
Modules that are not yet loaded won't show up.
Check load_all/0 if you want to preload all tasks.

 Link to this function

 clear()

 View Source

 @spec clear() :: :ok

Clears all invoked tasks, allowing them to be reinvoked.
This operation is not recursive.

 Link to this function

 get(task)

 View Source

 @spec get(task_name()) :: task_module() | nil

Receives a task name and returns the corresponding task module if one exists.
Returns nil if the module cannot be found, if it is an alias, or if it is
not a valid Mix.Task.

 Link to this function

 get!(task)

 View Source

 @spec get!(task_name()) :: task_module()

Receives a task name and retrieves the corresponding task module.

 Exceptions

	Mix.NoTaskError - raised if the task could not be found
	Mix.InvalidTaskError - raised if the task is not a valid Mix.Task

 Link to this function

 load_all()

 View Source

 @spec load_all() :: [task_module()]

Loads all tasks in all code paths.

 Link to this function

 load_tasks(dirs)

 View Source

 @spec load_tasks([List.Chars.t()]) :: [task_module()]

Loads all tasks in the given paths.

 Link to this function

 moduledoc(module)

 View Source

 @spec moduledoc(task_module()) :: String.t() | nil | false

Gets the moduledoc for the given task module.
Returns the moduledoc or nil.

 Link to this function

 preferred_cli_env(task)

 View Source

 This function is deprecated. Configure the environment in your mix.exs.

Available for backwards compatibility.

 Link to this function

 recursing?()

 View Source

 (since 1.8.0)

 @spec recursing?() :: boolean()

Indicates if the current task is recursing.
This returns true if a task is marked as recursive
and it is being executed inside an umbrella project.

 Link to this function

 recursive(module)

 View Source

 @spec recursive(task_module()) :: boolean()

Checks if the task should be run recursively for all sub-apps in
umbrella projects.
Returns true or false.

 Link to this function

 reenable(task)

 View Source

 @spec reenable(task_name()) :: :ok

Reenables a given task so it can be executed again down the stack.
Both alias and the regular stack are re-enabled when this function
is called.
If an umbrella project reenables a task, it is re-enabled for all
child projects.

 Link to this function

 requirements(module)

 View Source

 (since 1.11.0)

 @spec requirements(task_module()) :: []

Gets the list of requirements for the given task.
Returns a list of strings, where the string is expected
to be a task optionally followed by its arguments.

 Link to this function

 rerun(task, args \\ [])

 View Source

 @spec rerun(task_name(), [any()]) :: any()

Reruns task with the given arguments.
This function reruns the given task; to do that, it first re-enables the task
and then runs it as normal.

 Link to this function

 run(task, args \\ [])

 View Source

 @spec run(task_name(), [any()]) :: any()

Conditionally runs the task (or alias) with the given args.
If there exists a task matching the given task name and it has not yet been
invoked, this will run the task with the given args and return the result.
If there is an alias defined
for the given task name, the alias will be invoked instead of the original
task.
If the task or alias has already been invoked, subsequent calls to run/2
will abort without executing and return :noop.
Remember: by default, tasks will only run once, even when called repeatedly!
If you need to run a task multiple times, you need to re-enable it via
reenable/1 or call it using rerun/2.
run/2 raises an exception if an alias or a task cannot be found or if the
task is invalid. See get!/1 for more information.

 Examples

iex> Mix.Task.run("format", ["mix.exs"])
:ok

 Link to this function

 run_in_apps(task, apps, args \\ [])

 View Source

 (since 1.14.0)

 @spec run_in_apps(task_name(), [atom()], [any()]) :: any()

Runs recursive tasks in the specified list of children apps for umbrella projects.
If the task is not recursive (whose purpose is to be run in children
applications), it runs at the project root level as usual. Calling
this function outside of an umbrella project root fails.

 Link to this function

 shortdoc(module)

 View Source

 @spec shortdoc(task_module()) :: String.t() | nil

Gets the shortdoc for the given task module.
Returns the shortdoc or nil.

 Link to this function

 task?(module)

 View Source

 @spec task?(task_module()) :: boolean()

Returns true if given module is a task.

 Link to this function

 task_name(module)

 View Source

 @spec task_name(task_module()) :: task_name()

Returns the task name for the given module.

 Examples

iex> Mix.Task.task_name(Mix.Tasks.Test)
"test"

Mix.Task.Compiler behaviour

This module defines the behaviour for a Mix task that does compilation.
A Mix compiler task can be defined by simply using Mix.Task.Compiler
in a module whose name starts with Mix.Tasks.Compile. and defining
the run/1 function:
defmodule Mix.Tasks.Compile.MyLanguage do
 use Mix.Task.Compiler

 def run(_args) do
 :ok
 end
end
The run/1 function returns an atom indicating the status of the
compilation, and optionally can also return a list of "diagnostics"
such as warnings or compilation errors. Doing this enables code
editors to display issues inline without having to analyze the
command-line output.
If the compiler uses manifest files to track stale sources, it should
define manifests/0, and if it writes any output to disk it should
also define clean/0.
A compiler supports the same attributes for configuration and
documentation as a regular Mix task. See Mix.Task for more information.

 Summary

 Types

 status()

 Callbacks

 clean()

 Removes build artifacts and manifests.

 manifests()

 Lists manifest files for the compiler.

 run(list)

 Receives command-line arguments and performs compilation. If it
produces errors, warnings, or any other diagnostic information,
it should return a tuple with the status and a list of diagnostics.

 Functions

 after_compiler(name, fun)

 Adds a callback that runs after a given compiler.

 Types

 Link to this type

 status()

 View Source

 @type status() :: :ok | :noop | :error

 Callbacks

 Link to this callback

 clean()

 View Source

 (optional)

 @callback clean() :: any()

Removes build artifacts and manifests.

 Link to this callback

 manifests()

 View Source

 (optional)

 @callback manifests() :: [Path.t()]

Lists manifest files for the compiler.

 Link to this callback

 run(list)

 View Source

 @callback run([binary()]) :: status() | {status(), [Mix.Task.Compiler.Diagnostic.t()]}

Receives command-line arguments and performs compilation. If it
produces errors, warnings, or any other diagnostic information,
it should return a tuple with the status and a list of diagnostics.

 Functions

 Link to this function

 after_compiler(name, fun)

 View Source

 (since 1.10.0)

 @spec after_compiler(
 atom(),
 ({status(), [Mix.Task.Compiler.Diagnostic.t()]} ->
 {status(), [Mix.Task.Compiler.Diagnostic.t()]})
) :: :ok

Adds a callback that runs after a given compiler.
The callback is invoked after the compiler runs and
it receives a tuple with current status and the list
of diagnostic. It must return the updated status and
diagnostics.
If the given compiler does not run (for instance,
because an earlier compiler in the stack has aborted),
the callback will not be executed.

Mix.Task.Compiler.Diagnostic

Diagnostic information such as a warning or compilation error.
The file and position relate to where the diagnostic should be shown.
If there is a file and position, then the diagnostic is precise
and you can use the given file and position for generating snippets,
IDEs annotations, and so on. An optional span is available with
the line and column the diagnostic ends.
Otherwise, a stacktrace may be given, which you can place your own
heuristics to provide better reporting.
The source field points to the source file the compiler tracked
the error to. For example, a file lib/foo.ex may embed .eex
templates from lib/foo/bar.eex. A syntax error on the EEx template
will point to file lib/foo/bar.eex but the source is lib/foo.ex.

 Summary

 Types

 severity()

 Severity of a diagnostic

 t()

 Types

 Link to this type

 severity()

 View Source

 @type severity() :: :error | :warning | :information | :hint

Severity of a diagnostic:
	:error - An issue that caused compilation to fail

	:warning - An issue that did not cause failure but suggests the
programmer may have made a mistake

	:hint - A suggestion for style or good practices that is not as
severe as a warning

	:information - Any other information relevant to compilation that
does not fit into the above categories

 Link to this type

 t()

 View Source

 @type t() :: %Mix.Task.Compiler.Diagnostic{
 compiler_name: String.t(),
 details: term(),
 file: Path.t() | nil,
 message: IO.chardata(),
 position: Code.position(),
 severity: severity(),
 source: Path.t() | nil,
 span: {line :: pos_integer(), column :: pos_integer()} | nil,
 stacktrace: Exception.stacktrace()
}

Mix.ElixirVersionError exception

Mix.Error exception

Mix.InvalidTaskError exception

Mix.NoProjectError exception

Mix.NoTaskError exception

mix app.config

Loads and configures all registered apps.
This is done by loading config/runtime.exs if one exists.
The application will be compiled if it was not compiled before.

 Command line options

	--force - forces compilation regardless of compilation times
	--preload-modules - preloads all modules defined in applications
	--no-archives-check - does not check archives
	--no-app-loading - does not load .app resource file after compilation
	--no-compile - does not compile even if files require compilation
	--no-deps-check - does not check dependencies
	--no-elixir-version-check - does not check Elixir version
	--no-validate-compile-env - does not validate the application compile environment

mix app.start

Starts all registered apps.
First, this task guarantees that all dependencies are in place
and that the current project has been compiled. Then, the current
application is started as a temporary application, unless
:start_permanent is set to true in your project configuration
or the --permanent option is given. Setting it to permanent
guarantees the node will shut down if the application terminates
(typically because its root supervisor has terminated).

 Configuration

	:start_permanent - the application and all of its children
applications are started in permanent mode. Defaults to false.

	:start_concurrently - applications are started concurrently
whenever possible. This option only has an effect on Erlang/OTP 26+.
Defaults to false.

 Command line options

	--force - forces compilation regardless of compilation times
	--temporary - starts the application as temporary
	--permanent - starts the application as permanent
	--preload-modules - preloads all modules defined in applications
	--no-archives-check - does not check archives
	--no-compile - does not compile even if files require compilation
	--no-deps-check - does not check dependencies
	--no-elixir-version-check - does not check Elixir version
	--no-start - does not actually start applications, only compiles and loads code

mix app.tree

Prints the application tree.
$ mix app.tree --exclude logger --exclude elixir

If no application is given, it uses the current application defined
in the mix.exs file.

 Command line options

	--exclude - exclude applications which you do not want to see printed.
kernel, stdlib and compiler are always excluded from the tree.

	--format - Can be set to one of either:
	pretty - uses Unicode code points for formatting the tree.
This is the default except on Windows.

	plain - does not use Unicode code points for formatting the tree.
This is the default on Windows.

	dot - produces a DOT graph description of the application tree
in app_tree.dot in the current directory.
Warning: this will overwrite any previously generated file.

mix archive

Lists all installed archives.
Archives are typically installed at ~/.mix/archives
although the installation path can be customized by
setting the MIX_ARCHIVES environment variable.
Since archives are specific to Elixir versions, it is
expected from build tools to swap the MIX_ARCHIVES
variable to different locations based on a particular
Elixir installation.

mix archive.build

Builds an archive according to the specification of the
Erlang archive format.
Archives are meant to contain small projects, usually installed
locally. Archives may be installed into a Mix environment by
running mix archive.install. Once installed, the archive is
available to all Mix projects. For this reason, the functionality
behind archives is limited. For instance, archives do not include
dependencies, as those would conflict with any dependency in a
Mix project after the archive is installed. In general, we recommend
the usage of archives to be limited for extensions of Mix, such
as custom SCMs, package managers, and the like. For general scripts to be
distributed to developers, please see mix escript.build.
The archive will be created in the current directory (which is
expected to be the project root), unless an argument -o is
provided with the file name.
By default, this command archives the current project but the -i
option can be used to archive any directory. For example,
mix archive.build with no options translates to:
$ mix archive.build -i _build/ENV/lib/APP -o APP-VERSION.ez

 Command line options

	-o - specifies output file name.
If there is a mix.exs, defaults to "APP-VERSION.ez".

	-i - specifies the input directory to archive.
If there is a mix.exs, defaults to the current application build.

	--no-compile - skips compilation.
Only applies when mix.exs is available.

	--include-dot-files - adds dot files from priv directory to the archive.

mix archive.check

Checks all archives are available.
Mix projects can specify required archives using
the :archives option:
archives: [{:foo, "~> 1.0.0"}]
This task guarantees this option is respected.

mix archive.install

Installs an archive locally.
If no argument is supplied but there is an archive in the project's
root directory (created with mix archive.build), then the archive
will be installed locally. For example:
$ mix do archive.build + archive.install

If an argument is provided, it should be a local path to a
prebuilt archive, a Git repository, a GitHub repository, or a Hex
package.
$ mix archive.install archive.ez
$ mix archive.install path/to/archive.ez
$ mix archive.install git https://path/to/git/repo
$ mix archive.install git https://path/to/git/repo branch git_branch
$ mix archive.install git https://path/to/git/repo tag git_tag
$ mix archive.install git https://path/to/git/repo ref git_ref
$ mix archive.install github user/project
$ mix archive.install github user/project branch git_branch
$ mix archive.install github user/project tag git_tag
$ mix archive.install github user/project ref git_ref
$ mix archive.install hex hex_package
$ mix archive.install hex hex_package 1.2.3

After installation, the tasks in the archive are available locally:
$ mix some_task

Note that installing via Git, GitHub, or Hex fetches the source
of the archive and builds it, while using local path uses a pre-built archive.

 Command line options

	--sha512 - checks the archive matches the given SHA-512 checksum. Only
applies to installations via a local path

	--force - forces installation without a shell prompt; primarily
intended for automation in build systems like Make

	--submodules - fetches repository submodules before building archive from
Git or GitHub

	--sparse - checkout a single directory inside the Git repository and use
it as the archive root directory

	--app - specifies a custom app name to be used for building the archive
from Git, GitHub, or Hex

	--organization - set this for Hex private packages belonging to an
organization

	--repo - set this for self-hosted Hex instances, defaults to hexpm

mix archive.uninstall

Uninstalls local archives.
$ mix archive.uninstall archive.ez

 Command line options

	--force - forces uninstallation without a shell prompt; primarily
intended for automation

mix clean

Deletes generated application files.
This command deletes all build artifacts for the current project.
Dependencies' sources and build files are cleaned only if the
--deps option is given.
By default this task works across all environments, unless --only
is given.

 Command line options

	--deps - clean dependencies as well as the current project's files
	--only - only clean the given environment

mix cmd

Executes the given command.
For example, you can invoke an external command such as make:
$ mix cmd make

By passing the --cd flag before the command, you can also force
the command to run in a specific directory:
$ mix cmd --cd "third-party" make

This task is also useful in umbrella applications to execute a command
on each child app:
$ mix cmd pwd

You can limit which apps the cmd runs in by using mix do with the --app
option:
$ mix do --app app1 --app app2 cmd pwd

The tasks aborts whenever a command exits with a non-zero status.
This task is automatically re-enabled, so it can be called multiple times
with different arguments.

 Command line options

	--app - limit running the command to the given app.
This option is currently deprecated in favor of mix do --app

	--cd - (since v1.10.4) the directory to run the command in

 Zombie operating system processes

Beware that the Erlang VM does not terminate child processes
when it shuts down. Therefore, if you use mix cmd to start
long running processes and then shut down the VM, it is likely
that those child processes won't be terminated with the VM.
A solution is to make sure the child processes listen to the
standard input and terminate when standard input is closed.
We discuss this topic at length in the "Zombie operating system processes"
of the Port module documentation.

mix compile

The main entry point to compile source files.
It simply runs the compilers registered in your project and returns
a tuple with the compilation status and a list of diagnostics.
Before compiling code, it performs a series of checks to ensure all
dependencies are compiled and the project is up to date. Then the
code path of your Elixir system is pruned to only contain the dependencies
and applications that you have explicitly listed in your mix.exs.

 Configuration

	:build_embedded - this option was used to copy all code and
priv content to the _build directory. However, this option no
longer has an effect as Elixir will now copy those at release time

	:compilers - compilers to run, defaults to Mix.compilers/0,
which are [:erlang, :elixir, :app].

	:consolidate_protocols - when true, runs protocol
consolidation via the mix compile.protocols task. The default
value is true.

	:build_path - the directory where build artifacts
should be written to. This option is intended only for
child apps within a larger umbrella application so that
each child app can use the common _build directory of
the parent umbrella. In a non-umbrella context, configuring
this has undesirable side-effects (such as skipping some
compiler checks) and should be avoided.

	:prune_code_paths - prune code paths before compilation. When true
(default), this prunes code paths of applications that are not listed
in the project file with dependencies. When false, this keeps the
entirety of Erlang/OTP available when the project starts, including
the paths set by the code loader from the ERL_LIBS environment as
well as explicitely listed by providing -pa and -pz options
to Erlang.

 Compilers

To see documentation for each specific compiler, you must
invoke help directly for the compiler command:
$ mix help compile.elixir
$ mix help compile.erlang

You can get a list of all compilers by running:
$ mix compile --list

 Command line options

	--all-warnings (--no-all-warnings) - prints all warnings, including previous compilations
(default is true except on errors)
	--erl-config - path to an Erlang term file that will be loaded as Mix config
	--force - forces compilation
	--list - lists all enabled compilers
	--no-app-loading - does not load .app resource file after compilation
	--no-archives-check - skips checking of archives
	--no-compile - does not actually compile, only loads code and perform checks
	--no-deps-check - skips checking of dependencies
	--no-elixir-version-check - does not check Elixir version
	--no-optional-deps - does not compile or load optional deps. Useful for testing
if a library still successfully compiles without optional dependencies (which is the
default case with dependencies)
	--no-prune-code-paths - do not prune code paths before compilation, this keeps
the entirety of Erlang/OTP available when the project starts
	--no-protocol-consolidation - skips protocol consolidation
	--no-validate-compile-env - does not validate the application compile environment
	--return-errors - returns error status and diagnostics instead of exiting on error
	--warnings-as-errors - exit with non-zero status if compilation has one or more warnings

 Summary

 Functions

 compilers(config \\ Mix.Project.config())

 Returns all compilers for the current project.

 Functions

 Link to this function

 compilers(config \\ Mix.Project.config())

 View Source

Returns all compilers for the current project.

mix compile.app

Writes an .app file.
An .app file is a file containing Erlang terms that defines
your application. Mix automatically generates this file based on
your mix.exs configuration.
In order to generate the .app file, Mix expects your project
to have both :app and :version keys. Furthermore, you can
configure the generated application by defining an application/0
function in your mix.exs that returns a keyword list.
The most commonly used keys are:
	:extra_applications - a list of OTP applications
your application depends on which are not included in :deps
(usually defined in deps/0 in your mix.exs). For example,
here you can declare a dependency on applications that ship
with Erlang/OTP or Elixir, like :crypto or :logger.
Optional extra applications can be declared as a tuple, such
as {:ex_unit, :optional}. Mix guarantees all non-optional
applications are started before your application starts.

	:registered - the name of all registered processes in the
application. If your application defines a local GenServer
with name MyServer, it is recommended to add MyServer
to this list. It is most useful in detecting conflicts
between applications that register the same names.

	:env - the default values for the application environment.
The application environment is one of the most common ways
to configure applications. See the Application module for
mechanisms to read and write to the application environment.

For example:
def application do
 [
 extra_applications: [:logger, :crypto, ex_unit: :optional],
 env: [key: :value],
 registered: [MyServer]
]
end
Other options include:
	:applications - all applications your application depends
on at runtime. By default, this list is automatically inferred
from your dependencies. Mix and other tools use the application
list in order to start your dependencies before starting the
application itself.

	:mod - specifies a module to invoke when the application
is started. It must be in the format {Mod, args} where
args is often an empty list. The module specified must
implement the callbacks defined by the Application
module.

	:start_phases - specifies a list of phases and their arguments
to be called after the application is started. See the "Phases"
section below.

	:included_applications - specifies a list of applications
that will be included in the application. It is the responsibility of
the primary application to start the supervision tree of all included
applications, as only the primary application will be started. A process
in an included application considers itself belonging to the
primary application.

	:maxT - specifies the maximum time the application is allowed to run, in
milliseconds. Applications are stopped if :maxT is reached, and their
top-level supervisor terminated with reason :normal. This threshold is
technically valid in any resource file, but it is only effective for
applications with a callback module. Defaults to :infinity.

Besides the options above, .app files also expect other options
like :modules and :vsn, but these are automatically added by Mix.
The complete list can be found on Erlang's application
specification.

 Command line options

	--force - forces compilation regardless of modification times
	--compile-path - where to find .beam files and write the
resulting .app file, defaults to Mix.Project.compile_path/0

 Phases

Applications provide a start phases mechanism which will be called,
in order, for the application and all included applications. If a phase
is not defined for an included application, that application is skipped.
Let's see an example MyApp.application/0 function:
def application do
 [
 start_phases: [init: [], go: [], finish: []],
 included_applications: [:my_included_app]
]
end
And an example :my_included_app defines on its mix.exs the function:
def application do
 [
 mod: {MyIncludedApp, []},
 start_phases: [go: []]
]
end
In this example, the order that the application callbacks are called in is:
Application.start(MyApp)
MyApp.start(:normal, [])
MyApp.start_phase(:init, :normal, [])
MyApp.start_phase(:go, :normal, [])
MyIncludedApp.start_phase(:go, :normal, [])
MyApp.start_phase(:finish, :normal, [])

mix compile.elixir

Compiles Elixir source files.
Elixir is smart enough to recompile only files that have changed
and their dependencies. This means if lib/a.ex is invoking
a function defined over lib/b.ex at compile time, whenever
lib/b.ex changes, lib/a.ex is also recompiled.
Note Elixir considers a file as changed if its source file has
changed on disk since the last compilation AND its contents are
no longer the same.

 @external_resource

If a module depends on external files, those can be annotated
with the @external_resource module attribute. If these files
change, the Elixir module is automatically recompiled.

 __mix_recompile__?/0

A module may export a __mix_recompile__?/0 function that can
cause the module to be recompiled using custom rules. For example,
to recompile whenever a file is changed in a given directory, you
can use a combination of @external_resource for existing files
and a __mix_recompile__?/0 check to verify when new entries are
added to the directory itself:
defmodule MyModule do
 paths = Path.wildcard("*.txt")
 @paths_hash :erlang.md5(paths)

 for path <- paths do
 @external_resource path
 end

 def __mix_recompile__?() do
 Path.wildcard("*.txt") |> :erlang.md5() != @paths_hash
 end
end
Compiler calls __mix_recompile__?/0 for every module being
compiled (or previously compiled) and thus it is very important
to do there as little work as possible to not slow down the
compilation.
If module has @compile {:autoload, false}, __mix_recompile__?/0 will
not be used.

 Command line options

	--all-warnings (--no-all-warnings) - prints all warnings, including previous compilations
(default is true except on errors)
	--docs (--no-docs) - attaches (or not) documentation to compiled modules
	--debug-info (--no-debug-info) - attaches (or not) debug info to compiled modules
	--force - forces compilation regardless of modification times
	--ignore-module-conflict - does not emit warnings if a module was previously defined
	--long-compilation-threshold N - sets the "long compilation" threshold
(in seconds) to N (see the docs for Kernel.ParallelCompiler.compile/2)
	--purge-consolidation-path-if-stale PATH - deletes and purges modules in the
given protocol consolidation path if compilation is required
	--profile - if set to time, outputs timing information of compilation steps
	--tracer - adds a compiler tracer in addition to any specified in the mix.exs file
	--verbose - prints each file being compiled
	--warnings-as-errors - treats warnings in the current project as errors and
return a non-zero exit status

 Configuration

	:elixirc_paths - directories to find source files.
Defaults to ["lib"].

	:elixirc_options - compilation options that apply to Elixir's compiler.
See Code.put_compiler_option/2 for a complete list of options. These
options are often overridable from the command line using the switches
above.

	[xref: [exclude: ...]] - a list of module or {module, function, arity}
that should not be warned on in case on undefined modules or undefined
application warnings.

mix compile.erlang

Compiles Erlang source files.
When this task runs, it will first check the modification times of
all files to be compiled and if they haven't been changed since the
last compilation, it will not compile them. If any of them have changed,
it compiles everything.

 Command line options

	--all-warnings (--no-all-warnings) - prints all warnings, including previous compilations
(default is true except on errors)
	--force - forces compilation regardless of modification times

 Configuration

	ERL_COMPILER_OPTIONS - can be used to give default compile options.
The value must be a valid Erlang term. If the value is a list, it will
be used as is. If it is not a list, it will be put into a list.

	:erlc_paths - directories to find source files.
Defaults to ["src"].

	:erlc_include_path - directory for adding include files.
Defaults to "include".

	:erlc_options - compilation options that apply to Erlang's
compiler. Defaults to [].
For a complete list of options, see :compile.file/2.
The option :debug_info is always added to the end of it.
You can disable that using:
erlc_options: [debug_info: false]

mix compile.leex

Compiles Leex source files.
When this task runs, it will check the modification time of every file, and
if it has changed, the file will be compiled. Files will be
compiled in the same source directory with a .erl extension.
You can force compilation regardless of modification times by passing
the --force option.
You must add compilers: [:leex] ++ Mix.compilers() to the def project
section of your mix.exs to run this compiler.

 Command line options

	--all-warnings (--no-all-warnings) - prints all warnings, including previous compilations
(default is true except on errors)
	--force - forces compilation regardless of modification times

 Configuration

	:erlc_paths - directories to find source files. Defaults to ["src"].

	:leex_options - compilation options that apply to Leex's compiler.
For a complete list of options, see :leex.file/2.
Note that the :report, :return_errors, and :return_warnings options
are overridden by this compiler, thus setting them has no effect.

mix compile.protocols

Consolidates all protocols in all paths.
This task is automatically invoked unless the project
disables the :consolidate_protocols option in their
configuration.

 Consolidation

Protocol consolidation is useful in production when no
dynamic code loading will happen, effectively optimizing
protocol dispatches by not accounting for code loading.
This task consolidates all protocols in the code path
and outputs the new binary files to the given directory.
Defaults to "_build/MIX_ENV/lib/YOUR_APP/consolidated"
for regular apps and "_build/MIX_ENV/consolidated" in
umbrella projects.
In case you are manually compiling protocols or building
releases, you need to take the generated protocols into
account. This can be done with:
$ elixir -pa _build/MIX_ENV/lib/YOUR_APP/consolidated -S mix run

Or in umbrellas:
$ elixir -pa _build/MIX_ENV/consolidated -S mix run

You can verify a protocol is consolidated by checking
its attributes:
iex> Protocol.consolidated?(Enumerable)
true

 Summary

 Functions

 consolidated?()

 Returns if protocols have been consolidated at least once.

 Functions

 Link to this function

 consolidated?()

 View Source

Returns if protocols have been consolidated at least once.

mix compile.yecc

Compiles Yecc source files.
When this task runs, it will check the modification time of every file, and
if it has changed, the file will be compiled. Files will be
compiled in the same source directory with a .erl extension.
You can force compilation regardless of modification times by passing
the --force option.
You must add compilers: [:yecc] ++ Mix.compilers() in the
def project section of your mix.exs to run this compiler.

 Command line options

	--all-warnings (--no-all-warnings) - prints all warnings, including previous compilations
(default is true except on errors)
	--force - forces compilation regardless of modification times

 Configuration

	:erlc_paths - directories to find source files. Defaults to ["src"].

	:yecc_options - compilation options that apply
to Yecc's compiler.
For a complete list of options, see :yecc.file/1.
Note that the :report, :return_errors, and :return_warnings options
are overridden by this compiler, thus setting them has no effect.

mix deps

Lists all dependencies and their status.
Dependencies must be specified in the mix.exs file in one of
the following formats:
{app, requirement}
{app, opts}
{app, requirement, opts}
Where:
	app is an atom
	requirement is a Version requirement or a regular expression
	opts is a keyword list of options

For example:
{:plug, ">= 0.4.0"}
{:gettext, git: "https://github.com/elixir-lang/gettext.git", tag: "0.1"}
{:local_dependency, path: "path/to/local_dependency"}
By default, dependencies are fetched using the Hex package manager:
{:plug, ">= 0.4.0"}
By specifying such dependencies, Mix will automatically install
Hex (if it wasn't previously installed) and download a package
suitable to your project. Note Hex expects the dependency
requirement to always be given and it will warn otherwise.
Mix also supports Git and path dependencies:
{:foobar, git: "https://github.com/elixir-lang/foobar.git", tag: "0.1"}
{:foobar, path: "path/to/foobar"}
And also in umbrella dependencies:
{:my_app, in_umbrella: true}
Path and in umbrella dependencies are automatically recompiled by
the parent project whenever they change. While fetchable dependencies,
like the ones using :git, are recompiled only when fetched/updated.
The dependencies' versions are expected to be formatted according to
Semantic Versioning and the requirements must be specified as defined
in the Version module.

 Options

Below we provide a more detailed look into the available options.

 Dependency definition options

	:app - when set to false, does not read the app file for this
dependency. By default, the app file is read

	:env - the environment (as an atom) to run the dependency on; defaults to :prod

	:compile - a command (string) to compile the dependency; defaults to a mix,
rebar or make command

	:optional - marks the dependency as optional. In such cases, the
current project will always include the optional dependency but any
other project that depends on the current project won't be forced to
use the optional dependency. However, if the other project includes
the optional dependency on its own, the requirements and options
specified here will also be applied. Optional dependencies will not
be started by the application.

	:only - the dependency is made available only in the given environments,
useful when declaring dev- or test-only dependencies; by default the
dependency will be available in all environments. The value of this option
can either be a single environment (like :dev) or a list of environments
(like [:dev, :test])

	:targets - the dependency is made available only for the given targets.
By default the dependency will be available in all environments. The value
of this option can either be a single target (like :host) or a list of
environments (like [:host, :rpi3])

	:override - if set to true the dependency will override any other
definitions of itself by other dependencies

	:manager - Mix can also compile Rebar3 and makefile projects
and can fetch sub dependencies of Rebar3 projects. Mix will
try to infer the type of project but it can be overridden with this
option by setting it to :mix, :rebar3, or :make. In case
there are conflicting definitions, the first manager in the list above
will be picked up. For example, if a dependency is found with :rebar3
as a manager in different part of the trees, :rebar3 will be automatically
picked. You can find the manager by running mix deps and override it by
setting the :override option in a top-level project.

	:runtime - whether the dependency is part of runtime applications.
If the :applications key is not provided in def application in your
mix.exs file, Mix will automatically include all dependencies as a runtime
application, except if runtime: false is given. Defaults to true.

	:system_env - an enumerable of key-value tuples of binaries to be set
as environment variables when loading or compiling the dependency

 Git options (:git)

	:git - the Git repository URI
	:github - a shortcut for specifying Git repos from GitHub, uses :git
	:ref - the reference to checkout (may be a branch, a commit SHA or a tag)
	:branch - the Git branch to checkout
	:tag - the Git tag to checkout
	:submodules - when true, initialize submodules for the repo
	:sparse - checkout a single directory inside the Git repository and use it
as your Mix dependency. Search "sparse Git checkouts" for more information.
	:subdir - (since v1.13.0) search for the project in the given directory
relative to the git checkout. This is similar to :sparse option but instead
of a doing a sparse checkout it does a full checkout.

If your Git repository requires authentication, such as basic username:password
HTTP authentication via URLs, it can be achieved via Git configuration, keeping
the access rules outside of source control.
$ git config --global url."https://YOUR_USER:YOUR_PASS@example.com/".insteadOf "https://example.com/"

For more information, see the git config documentation:
https://git-scm.com/docs/git-config#git-config-urlltbasegtinsteadOf

 Path options (:path)

	:path - the path for the dependency
	:in_umbrella - when true, sets a path dependency pointing to
"../#{app}", sharing the same environment as the current application

 Hex options (:hex)

See the Hex usage documentation for Hex options.

 Deps task

mix deps task lists all dependencies in the following format:
APP VERSION (SCM) (MANAGER)
[locked at REF]
STATUS
For dependencies satisfied by Hex, REF is the package checksum.
For dependencies satisfied by git, REF is the commit object name,
and may include branch or tag information.
It supports the following options:
	--all - lists all dependencies, regardless of specified environment

mix deps.clean

Deletes the given dependencies' files, including build artifacts and fetched
sources.
Since this is a destructive action, cleaning of dependencies
only occurs when passing arguments/options:
	dep1 dep2 - the names of dependencies to be deleted separated by a space
	--unlock - also unlocks the deleted dependencies
	--build - deletes only compiled files (keeps source files)
	--all - deletes all dependencies
	--unused - deletes only unused dependencies
(i.e. dependencies no longer mentioned in mix.exs)

By default this task works across all environments,
unless --only is given which will clean all dependencies
for the chosen environment.

mix deps.compile

Compiles dependencies.
By default, this task attempts to compile all dependencies.
A list of dependencies can be given to compile multiple
dependencies in order.
This task attempts to detect if the project contains one of
the following files and act accordingly:
	mix.exs - invokes mix compile
	rebar.config - invokes rebar compile
	Makefile.win- invokes nmake /F Makefile.win (only on Windows)
	Makefile - invokes gmake on DragonFlyBSD, FreeBSD, NetBSD, and OpenBSD,
invokes make on any other operating system (except on Windows)

The compilation can be customized by passing a compile option
in the dependency:
{:some_dependency, "0.1.0", compile: "command to compile"}
If a list of dependencies is given, Mix will attempt to compile
them as is. For example, if project a depends on b, calling
mix deps.compile a will compile a even if b is out of
date. This is to allow parts of the dependency tree to be
recompiled without propagating those changes upstream. To ensure
b is included in the compilation step, pass --include-children.

 Command line options

	--force - force compilation of deps
	--skip-umbrella-children - skips umbrella applications from compiling
	--skip-local-deps - skips non-remote dependencies, such as path deps, from compiling

mix deps.get

Gets all out of date dependencies, i.e. dependencies
that are not available or have an invalid lock.

 Command line options

	--check-locked - raises if there are pending changes to the lockfile
	--no-archives-check - does not check archives before fetching deps
	--only - only fetches dependencies for given environment

mix deps.loadpaths

Checks, compiles, and loads all dependencies along the way.
If there is an invalid dependency, its status is printed
before aborting.
Although this task does not show up in mix help, it is
part of Mix public API and can be depended on.

 Command line options

	--no-archives-check - does not check archives
	--no-compile - does not compile even if files require compilation
	--no-deps-check - does not check or compile deps, only load available ones
	--no-elixir-version-check - does not check Elixir version
	--no-optional-deps - does not compile or load optional deps
	--no-path-loading - does not add entries to the code path

mix deps.precompile

Extension point for precompiling dependencies.
This is a task that can be aliased by projects
that need to execute certain tasks before
compiling dependencies:
aliases: ["deps.precompile": ["nerves.precompile", "deps.precompile"]]

mix deps.tree

Prints the dependency tree.
$ mix deps.tree

If no dependency is given, it uses the tree defined in the mix.exs file.

 Command line options

	--only - the environment to show dependencies for

	--target - the target to show dependencies for

	--exclude - exclude dependencies which you do not want to see printed.

	--format - Can be set to one of either:
	pretty - uses Unicode code points for formatting the tree.
This is the default except on Windows.

	plain - does not use Unicode code points for formatting the tree.
This is the default on Windows.

	dot - produces a DOT graph description of the dependency tree
in deps_tree.dot in the current directory.
Warning: this will override any previously generated file.

mix deps.unlock

Unlocks the given dependencies.
Since this is a destructive action, unlocking dependencies
only occurs when passing arguments/options:
	dep1 dep2 - the name of dependencies to be unlocked
	--all - unlocks all dependencies
	--filter - unlocks only deps matching the given name
	--unused - unlocks only unused dependencies (no longer mentioned
in the mix.exs file)
	--check-unused - checks that the mix.lock file has no unused
dependencies. This is useful in pre-commit hooks and CI scripts
if you want to reject contributions with extra dependencies

mix deps.update

Updates the given dependencies.
The given dependencies and the projects they depend on will
be unlocked and updated to the latest version according to their
version requirements.
Since this is a destructive action, updating all dependencies
only occurs when the --all command line option is passed.
All dependencies are automatically recompiled after update.

 mix deps.unlock + mix deps.get

Upgrading a dependency often requires the projects it depends on
to upgrade too. If you would rather update a single dependency and
not touch its children, you can explicitly unlock the single dependency
and run mix deps.get:
$ mix deps.unlock some_dep
$ mix deps.get

 Command line options

	--all - updates all dependencies
	--only - only fetches dependencies for given environment
	--target - only fetches dependencies for given target
	--no-archives-check - does not check archives before fetching deps

mix do

Executes the tasks separated by +:
$ mix do compile --list + deps

The plus should be followed by at least one space before and after.

 Examples

The example below prints the available compilers and
then the list of dependencies.
$ mix do compile --list + deps

Note that the majority of Mix tasks are only executed once
per invocation. So for example, the following command will
only compile once:
$ mix do compile + some_other_command + compile

When compile is executed again, Mix will notice the task
has already ran, and skip it.
Inside umbrella projects, you can limit recursive tasks
(the ones that run inside every app) by selecting the
desired application via the --app flag after do and
before the first task:
$ mix do --app app1 --app app2 compile --list + deps

Elixir versions prior to v1.14 used the comma exclusively
to separate commands:
$ mix do compile --list, deps

Since then, the + operator has been introduced as a
separator for better support on Windows terminals.

 Command line options

	--app - limit recursive tasks to the given apps.
This option may be given multiple times and must come
before any of the tasks.

mix escript

Lists all installed escripts.
Escripts are installed at ~/.mix/escripts. Add that path to your $PATH environment variable
to be able to run installed escripts from any directory.

mix escript.build

Builds an escript for the project.
An escript is an executable that can be invoked from the
command line. An escript can run on any machine that has
Erlang/OTP installed and by default does not require Elixir to
be installed, as Elixir is embedded as part of the escript.
This task guarantees the project and its dependencies are
compiled and packages them inside an escript. Before invoking
mix escript.build, it is only necessary to define a :escript
key with a :main_module option in your mix.exs file:
escript: [main_module: MyApp.CLI]
Escripts should be used as a mechanism to share scripts between
developers and not as a deployment mechanism. For running live
systems, consider using mix run or building releases. See
the Application module for more information on systems
life-cycles.
All of the configuration defined in config/config.exs will
be included as part of the escript. config/runtime.exs is also
included for Elixir escripts. Once the configuration is loaded,
this task starts the current application. If this is not desired,
set the :app configuration to nil.
This task also removes documentation and debugging chunks from
the compiled .beam files to reduce the size of the escript.
If this is not desired, check the :strip_beams option.
priv directory support
escripts do not support projects and dependencies
that need to store or read artifacts from the priv directory.

 Command line options

Expects the same command line options as mix compile.

 Configuration

The following option must be specified in your mix.exs
under the :escript key:
	:main_module - the module to be invoked once the escript starts.
The module must contain a function named main/1 that will receive the
command line arguments. By default the arguments are given as a list of
binaries, but if project is configured with language: :erlang it will
be a list of charlists.

The remaining options can be specified to further customize the escript:
	:name - the name of the generated escript.
Defaults to app name.

	:path - the path to write the escript to.
Defaults to app name.

	:app - the app that starts with the escript.
Defaults to app name. Set it to nil if no application should
be started.

	:strip_beams - if true strips BEAM code in the escript to remove chunks
unnecessary at runtime, such as debug information and documentation.
Can be set to [keep: ["Docs", "Dbgi"]] to strip while keeping some chunks
that would otherwise be stripped, like docs, and debug info, for instance.
Defaults to true.

	:embed_elixir - if true embeds Elixir and its children apps
(ex_unit, mix, and the like) mentioned in the :applications list inside the
application/0 function in mix.exs.
Defaults to true for Elixir projects, false for Erlang projects.
Note: if you set this to false for an Elixir project, you will have to add paths to Elixir's
ebin directories to ERL_LIBS environment variable when running the resulting escript, in
order for the code loader to be able to find :elixir application and its children
applications (if they are used).

	:shebang - shebang interpreter directive used to execute the escript.
Defaults to "#! /usr/bin/env escript\n".

	:comment - comment line to follow shebang directive in the escript.
Defaults to "".

	:emu_args - emulator arguments to embed in the escript file.
Defaults to "".

There is one project-level option that affects how the escript is generated:
	language: :elixir | :erlang - set it to :erlang for Erlang projects
managed by Mix. Doing so will ensure Elixir is not embedded by default.
Your app will still be started as part of escript loading, with the
config used during build.

 Example

In your mix.exs:
defmodule MyApp.MixProject do
 use Mix.Project

 def project do
 [
 app: :my_app,
 version: "0.0.1",
 escript: escript()
]
 end

 def escript do
 [main_module: MyApp.CLI]
 end
end
Then define the entrypoint, such as the following in lib/cli.ex:
defmodule MyApp.CLI do
 def main(_args) do
 IO.puts("Hello from MyApp!")
 end
end

mix escript.install

Installs an escript locally.
If no argument is supplied but there is an escript in the project's root directory
(created with mix escript.build), then the escript will be installed
locally. For example:
$ mix do escript.build + escript.install

If an argument is provided, it should be a local path to a prebuilt escript,
a Git repository, a GitHub repository, or a Hex package.
$ mix escript.install escript
$ mix escript.install path/to/escript
$ mix escript.install git https://path/to/git/repo
$ mix escript.install git https://path/to/git/repo branch git_branch
$ mix escript.install git https://path/to/git/repo tag git_tag
$ mix escript.install git https://path/to/git/repo ref git_ref
$ mix escript.install github user/project
$ mix escript.install github user/project branch git_branch
$ mix escript.install github user/project tag git_tag
$ mix escript.install github user/project ref git_ref
$ mix escript.install hex hex_package
$ mix escript.install hex hex_package 1.2.3

After installation, the escript can be invoked as
$ ~/.mix/escripts/foo

For convenience, consider adding ~/.mix/escripts directory to your
$PATH environment variable. For more information, check the wikipedia
article on PATH: https://en.wikipedia.org/wiki/PATH_(variable)

 Command line options

	--sha512 - checks the escript matches the given SHA-512 checksum. Only
applies to installations via a local path

	--force - forces installation without a shell prompt; primarily
intended for automation in build systems like Make

	--submodules - fetches repository submodules before building escript from
Git or GitHub

	--sparse - checkout a single directory inside the Git repository and use
it as the escript project directory

	--app - specifies a custom app name to be used for building the escript
from Git, GitHub, or Hex

	--organization - set this for Hex private packages belonging to an
organization

	--repo - set this for self-hosted Hex instances, defaults to hexpm

mix escript.uninstall

Uninstalls local escripts:
$ mix escript.uninstall escript_name

 Command line options

	--force - forces uninstallation without a shell prompt; primarily
intended for automation

mix eval

Evaluates the given code within a configured application.
$ mix eval "IO.puts(1 + 2)"

The given code is evaluated after the current application
has been configured but without loading or starting them
(some applications may be loaded as part of booting but
that's not guaranteed). See mix run for running your
application and scripts within a started application.
This task is designed to mirror the bin/my_app eval command
in releases. It is typically used to invoke functions already
defined within your application. For example, you may have a
module such as:
defmodule MyApp.ReleaseTasks do
 def migrate_database do
 Application.load(:my_app)
 ...
 end
end
Once defined, you can invoke this function either via mix eval or
via bin/my_app eval inside a release as follows:
$ mix eval MyApp.ReleaseTasks.migrate_database
$ bin/my_app eval MyApp.ReleaseTasks.migrate_database

As you can see, the current application has to be either explicitly
loaded or started in your tasks, either by calling Application.load/1
or Application.ensure_all_started/1. This gives you full control over
the application booting life-cycle. For more information, see the
Application module.
This task is automatically re-enabled, so it can be called multiple
times with different arguments.

 Command-line options

	--no-archives-check - does not check archives
	--no-compile - does not compile even if files require compilation
	--no-deps-check - does not check dependencies
	--no-elixir-version-check - does not check the Elixir version from mix.exs
	--no-mix-exs - allows the command to run even if there is no mix.exs

mix format

Formats the given files and patterns.
$ mix format mix.exs "lib/**/*.{ex,exs}" "test/**/*.{ex,exs}"

If any of the files is -, then the input is read from stdin and the output
is written to stdout.

 Formatting options

The formatter will read a .formatter.exs file in the current directory for
formatter configuration. Evaluating this file should return a keyword list.
Here is an example of a .formatter.exs file that works as a starting point:
[
 inputs: ["{mix,.formatter}.exs", "{config,lib,test}/**/*.{ex,exs}"]
]
Besides the options listed in Code.format_string!/2, the .formatter.exs
file supports the following options:
	:inputs (a list of paths and patterns) - specifies the default inputs
to be used by this task. For example, ["mix.exs", "{config,lib,test}/**/*.{ex,exs}"].
Patterns are expanded with Path.wildcard/2.

	:plugins (a list of modules) (since v1.13.0) - specifies a list of
modules to customize how the formatter works. See the "Plugins" section
below for more information.

	:subdirectories (a list of paths and patterns) - specifies subdirectories
that have their own formatting rules. Each subdirectory should have a
.formatter.exs that configures how entries in that subdirectory should be
formatted as. Configuration between .formatter.exs are not shared nor
inherited. If a .formatter.exs lists "lib/app" as a subdirectory, the rules
in .formatter.exs won't be available in lib/app/.formatter.exs.
Note that the parent .formatter.exs must not specify files inside the "lib/app"
subdirectory in its :inputs configuration. If this happens, the behaviour of
which formatter configuration will be picked is unspecified.

	:import_deps (a list of dependencies as atoms) - specifies a list
 of dependencies whose formatter configuration will be imported.
 See the "Importing dependencies configuration" section below for more
 information.

	:export (a keyword list) - specifies formatter configuration to be exported.
See the "Importing dependencies configuration" section below.

 Task-specific options

	--check-formatted - checks that the file is already formatted.
This is useful in pre-commit hooks and CI scripts if you want to
reject contributions with unformatted code. If the check fails,
the formatted contents are not written to disk. Keep in mind
that the formatted output may differ between Elixir versions as
improvements and fixes are applied to the formatter.

	--no-exit - only valid when used with --check-formatted.
Pass this if you don't want this Mix task to fail (and return a non-zero exit code),
but still want to check for format errors and print them to the console.

	--dry-run - does not save files after formatting.

	--dot-formatter - path to the file with formatter configuration.
Defaults to .formatter.exs if one is available. See the
"Formatting options" section above for more information.

	--stdin-filename - path to the file being formatted on stdin.
This is useful if you are using plugins to support custom filetypes such
as .heex. Without passing this flag, it is assumed that the code being
passed via stdin is valid Elixir code. Defaults to "stdin.exs".

 When to format code

We recommend developers to format code directly in their editors, either
automatically when saving a file or via an explicit command or key binding. If
such option is not available in your editor of choice, adding the required
integration is usually a matter of invoking:
$ cd $project && mix format $file

where $file refers to the current file and $project is the root of your
project.
It is also possible to format code across the whole project by passing a list
of patterns and files to mix format, as shown at the top of this task
documentation. This list can also be set in the .formatter.exs file under the
:inputs key.

 Plugins

It is possible to customize how the formatter behaves. Plugins must implement
the Mix.Tasks.Format behaviour. For example, imagine that your project uses
Markdown in two distinct ways: via a custom ~M sigil and via files with the
.md and .markdown extensions. A custom plugin would look like this:
defmodule MixMarkdownFormatter do
 @behaviour Mix.Tasks.Format

 def features(_opts) do
 [sigils: [:M], extensions: [".md", ".markdown"]]
 end

 def format(contents, opts) do
 # logic that formats markdown
 end
end
The opts passed to format/2 contains all the formatting options and either:
	:sigil (atom) - the sigil being formatted, e.g. :M.

	:modifiers (charlist) - list of sigil modifiers.

	:extension (string) - the extension of the file being formatted, e.g. ".md".

Now any application can use your formatter as follows:
.formatter.exs
[
 # Define the desired plugins
 plugins: [MixMarkdownFormatter, AnotherMarkdownFormatter],
 # Remember to update the inputs list to include the new extensions
 inputs: ["{mix,.formatter}.exs", "{config,lib,test}/**/*.{ex,exs}", "posts/*.{md,markdown}"]
]
Notice that, when running the formatter with plugins, your code will be
compiled first.
In addition, the order by which you input your plugins is the format order.
So, in the above .formatter.exs, the MixMarkdownFormatter will format
the markdown files and sigils before AnotherMarkdownFormatter.

 Importing dependencies configuration

This task supports importing formatter configuration from dependencies.
A dependency that wants to export formatter configuration needs to have a
.formatter.exs file at the root of the project. In this file, the dependency
can list an :export option with configuration to export. For now, only one
option is supported under :export: :locals_without_parens (whose value has
the same shape as the value of the :locals_without_parens in Code.format_string!/2).
The functions listed under :locals_without_parens in the :export option of
a dependency can be imported in a project by listing that dependency in the
:import_deps option of the formatter configuration file of the project.
For example, consider you have a project called my_app that depends on another one called my_dep.
my_dep wants to export some configuration, so my_dep/.formatter.exs
would look like this:
my_dep/.formatter.exs
[
 # Regular formatter configuration for my_dep
 # ...

 export: [
 locals_without_parens: [some_dsl_call: 2, some_dsl_call: 3]
]
]
In order to import configuration, my_app's .formatter.exs would look like
this:
my_app/.formatter.exs
[
 import_deps: [:my_dep]
]

 Summary

 Functions

 formatter_for_file(file, opts \\ [])

 Returns a formatter function and the formatter options to
be used for the given file.

 formatter_opts_for_file(file, opts \\ [])

 deprecated

 Returns formatter options to be used for the given file.

 Functions

 Link to this function

 formatter_for_file(file, opts \\ [])

 View Source

 (since 1.13.0)

Returns a formatter function and the formatter options to
be used for the given file.
The function must be called with the contents of the file
to be formatted. The options are returned for reflection
purposes.

 Link to this function

 formatter_opts_for_file(file, opts \\ [])

 View Source

 This function is deprecated. Use formatter_for_file/2 instead.

Returns formatter options to be used for the given file.

mix help

Lists all tasks and aliases or prints the documentation for a given task or alias.

 Arguments

$ mix help - prints all aliases, tasks and their short descriptions
$ mix help ALIAS - prints the definition for the given alias
$ mix help TASK - prints full docs for the given task
$ mix help --search PATTERN - prints all tasks and aliases that contain PATTERN in the name
$ mix help --names - prints all task names and aliases
 (useful for autocompleting)

 Colors

When possible, mix help is going to use coloring for formatting
the help information. The formatting can be customized by configuring
the Mix application either inside your project (in config/config.exs)
or by using the local config (in ~/.mix/config.exs).
For example, to disable color, one may use the configuration:
[mix: [colors: [enabled: false]]]
The available color options are:
	:enabled - shows ANSI formatting (defaults to IO.ANSI.enabled?/0)
	:doc_code - the attributes for code blocks (cyan, bright)
	:doc_inline_code - inline code (cyan)
	:doc_headings - h1 and h2 (yellow, bright)
	:doc_title - the overall heading for the output (reverse, yellow, bright)
	:doc_bold - (bright)
	:doc_underline - (underline)

mix iex

A task that simply instructs users to run iex -S mix.

mix loadconfig

Loads and persists the given configuration.
$ mix loadconfig path/to/config.exs

Any configuration file loaded with loadconfig is treated
as a compile-time configuration.
Note that "config/config.exs" is always loaded automatically
by the Mix CLI when it boots. "config/runtime.exs" is loaded
automatically by mix app.config before starting the current
application. Therefore there is no need to load those config
files directly.
This task is automatically re-enabled, so it can be called
multiple times to load different configs.

mix loadpaths

Loads the application and its dependencies paths.
This task is never directly invoked from the command line,
but it is rather used as building block by other tasks.
Dependencies are checked, compiled, and loaded. Each step
can be explicitly disabled with flags.

 Configuration

	:elixir - matches the current Elixir version against the
given requirement

 Command line options

	--no-archives-check - does not check archives
	--no-compile - does not compile dependencies, only check and load them
	--no-deps-check - does not check dependencies, only load available ones
	--no-elixir-version-check - does not check Elixir version
	--no-optional-deps - does not compile or load optional deps
	--no-path-loading - does not add entries to the code path

mix local

Lists tasks installed locally via archives.

mix local.hex

Installs Hex locally.
$ mix local.hex [version]

By default the latest compatible version of Hex will be installed, unless
version is specified.
If installing a precompiled Hex does not work, you can compile and install
Hex directly with this command:
$ mix archive.install github hexpm/hex branch latest

 Command line options

	--force - forces installation without a shell prompt; primarily
intended for automation in build systems like make

	--if-missing - performs installation only if Hex is not installed yet;
intended to avoid repeatedly reinstalling Hex in automation when a script
may be run multiple times

If both options are set, the shell prompt is skipped and Hex is not
re-installed if it was already installed.

 Mirrors

If you want to change the default mirror
used for fetching Hex, set the HEX_BUILDS_URL environment variable.

mix local.public_keys

Public keys are used by Mix to install packages like Rebar and Hex.
Mix by default ships with a public key but new ones can be added
on demand.
To list all available keys:
$ mix local.public_keys

To list all available keys showing the keys themselves:
$ mix local.public_keys --detailed

To add a new key:
$ mix local.public_keys local/path/to/key

Be careful when adding new keys. Only add keys from sources you
trust.
Public keys are by default stored in your MIX_HOME under the
public_keys directory.

 Command line options

	--force - forces installation without a shell prompt; primarily
intended for automation in build systems like make

mix local.rebar

Fetches a copy of rebar3 from the given path or URL.
It defaults to safely download a Rebar copy from Hex's CDN.
However, a URL can be given as an argument, usually for an existing
local copy of Rebar:
$ mix local.rebar rebar3 path/to/rebar

The local copy is stored in your MIX_HOME (defaults to ~/.mix)
according to the current Elixir. The installed version of Rebar will
be used whenever required by mix deps.compile.

 Command line options

	rebar3 PATH - specifies a path for rebar3

	--sha512 - checks the Rebar script matches the given SHA-512 checksum

	--force - forces installation without a shell prompt; primarily
intended for automation in build systems like make

	--if-missing - performs installation only if not installed yet;
intended to avoid repeatedly reinstalling in automation when a script
may be run multiple times

 Mirrors

If you want to change the default mirror
to use for fetching rebar please set the HEX_BUILDS_URL environment variable.

mix new

Creates a new Elixir project.
It expects the path of the project as argument.
$ mix new PATH [--app APP] [--module MODULE] [--sup] [--umbrella]

A project at the given PATH will be created. The
application name and module name will be retrieved
from the path, unless --module or --app is given.
An --app option can be given in order to
name the OTP application for the project.
A --module option can be given in order
to name the modules in the generated code skeleton.
A --sup option can be given to generate an OTP application
skeleton including a supervision tree. Normally an app is
generated without a supervisor and without the app callback.
An --umbrella option can be given to generate an
umbrella project.

 Examples

$ mix new hello_world

Is equivalent to:
$ mix new hello_world --module HelloWorld

To generate an app with a supervision tree and an application callback:
$ mix new hello_world --sup

To generate an umbrella application with sub applications:
$ mix new hello_world --umbrella
$ cd hello_world/apps
$ mix new child_app

 Summary

 Functions

 reserved_application_names()

 Returns a list of reserved application names.

 Functions

 Link to this function

 reserved_application_names()

 View Source

Returns a list of reserved application names.

mix profile.cprof

Profiles the given file or expression using Erlang's cprof tool.
cprof can be useful when you want to discover the bottlenecks related
to function calls.
Before running the code, it invokes the app.start task which compiles
and loads your project. After that, the target expression is profiled together
with all matching function calls, by setting breakpoints containing
counters. These can only be set on BEAM code so BIFs cannot be call
count traced.
To profile the code, you can use syntax similar to the mix run task:
$ mix profile.cprof -e Hello.world
$ mix profile.cprof -e "[1, 2, 3] |> Enum.reverse |> Enum.map(&Integer.to_string/1)"
$ mix profile.cprof my_script.exs arg1 arg2 arg3

This task is automatically re-enabled, so you can profile multiple times
in the same Mix invocation.

 Command line options

	--matching - only profile calls matching the given Module.function/arity pattern
	--limit - filters out any results with a call count less than the limit
	--module - filters out any results not pertaining to the given module
	--eval, -e - evaluate the given code
	--require, -r - requires pattern before running the command
	--parallel, -p - makes all requires parallel
	--no-compile - does not compile even if files require compilation
	--no-deps-check - does not check dependencies
	--no-archives-check - does not check archives
	--no-halt - does not halt the system after running the command
	--no-start - does not start applications after compilation
	--no-elixir-version-check - does not check the Elixir version from mix.exs

 Profile output

Example output:
 CNT
Total 15
Enum 6 <--
 Enum."-map/2-lists^map/1-0-"/2 4
 Enum.reverse/1 1
 Enum.map/2 1
:elixir_compiler 4 <--
 anonymous fn/1 in :elixir_compiler.__FILE__/1 3
 anonymous fn/0 in :elixir_compiler.__FILE__/1 1
String.Chars.Integer 3 <--
 String.Chars.Integer.to_string/1 3
:erlang 2 <--
 :erlang.trace_pattern/3 2
Profile done over 20229 matching functions
The default output contains data gathered from all matching functions. The left
column structures each module and its total call count trace is presented on the right.
Each module has its count discriminated by function below. The <-- symbol is meant to
help visualize where a new module call count begins.
The first row (Total) is the sum of all function calls. In the last row the number of
matching functions that were considered for profiling is presented.
When --matching option is specified, call count tracing will be started only for
the functions matching the given pattern:
String.Chars.Integer 3 <--
 String.Chars.Integer.to_string/1 3
Profile done over 1 matching functions
The pattern can be a module name, such as String to count all calls to that module,
a call without arity, such as String.split, to count all calls to that function
regardless of arity, or a call with arity, such as String.split/3, to count all
calls to that exact module, function and arity.

 Caveats

You should be aware the profiler is stopped as soon as the code has finished running. This
may need special attention, when: running asynchronous code as function calls which were
called before the profiler stopped will not be counted; running synchronous code as long
running computations and a profiler without a proper MFA trace pattern or filter may
lead to a result set which is difficult to comprehend.
Other caveats are the impossibility to call count trace BIFs, since breakpoints can
only be set on BEAM code; functions calls performed by :cprof are not traced; the
maximum size of a call counter is equal to the host machine's word size
(for example, 2147483647 in a 32-bit host).

 Summary

 Functions

 profile(fun, opts \\ [])

 Allows to programmatically run the cprof profiler on expression in fun.

 Functions

 Link to this function

 profile(fun, opts \\ [])

 View Source

 @spec profile(
 (-> result),
 keyword()
) :: result
when result: any()

Allows to programmatically run the cprof profiler on expression in fun.
Returns the return value of fun.

 Options

	:matching - only profile calls matching the given pattern in form of
{module, function, arity}, where each element may be replaced by :_
to allow any value
	:limit - filters out any results with a call count less than the limit
	:module - filters out any results not pertaining to the given module

mix profile.eprof

Profiles the given file or expression using Erlang's eprof tool.
:eprof provides time information of each function call and can be useful
when you want to discover the bottlenecks related to this.
Before running the code, it invokes the app.start task which compiles
and loads your project. After that, the target expression is profiled together
with all matching function calls using the Erlang trace BIFs. The tracing of
the function calls for that is enabled when the profiling is begun, and
disabled when profiling is stopped.
To profile the code, you can use syntax similar to the mix run task:
$ mix profile.eprof -e Hello.world
$ mix profile.eprof -e "[1, 2, 3] |> Enum.reverse |> Enum.map(&Integer.to_string/1)"
$ mix profile.eprof my_script.exs arg1 arg2 arg3

This task is automatically re-enabled, so you can profile multiple times
in the same Mix invocation.

 Command line options

	--matching - only profile calls matching the given Module.function/arity pattern
	--calls - filters out any results with a call count lower than this
	--time - filters out any results that took lower than specified (in µs)
	--sort - sorts the results by time or calls (default: time)
	--eval, -e - evaluates the given code
	--require, -r - requires pattern before running the command
	--parallel, -p - makes all requires parallel
	--no-warmup - skips the warmup step before profiling
	--no-compile - does not compile even if files require compilation
	--no-deps-check - does not check dependencies
	--no-archives-check - does not check archives
	--no-halt - does not halt the system after running the command
	--no-start - does not start applications after compilation
	--no-elixir-version-check - does not check the Elixir version from mix.exs

 Profile output

Example output:
CALLS % TIME µS/CALL
Total 24 100.0 26 1.08
Enum.reduce_range_inc/4 5 3.85 1 0.20
:erlang.make_fun/3 1 7.69 2 2.00
Enum.each/2 1 7.69 2 2.00
anonymous fn/0 in :elixir_compiler_0.__FILE__/1 1 7.69 2 2.00
:erlang.integer_to_binary/1 5 15.39 4 0.80
:erlang.apply/2 1 15.39 4 4.00
anonymous fn/3 in Enum.each/2 5 19.23 5 1.00
String.Chars.Integer.to_string/1 5 23.08 6 1.20

Profile done over 8 matching functions
The default output contains data gathered from all matching functions. The first
row after the header contains the sums of the partial results and the average time
for all the function calls listed. The following rows contain the function call,
followed by the number of times that the function was called, then by the percentage
of time that the call uses, then the total time for that function in microseconds,
and, finally, the average time per call in microseconds.
When --matching option is specified, call count tracing will be started only for
the functions matching the given pattern:
CALLS % TIME µS/CALL
Total 5 100.0 6 1.20
String.Chars.Integer.to_string/1 5 100.0 6 1.20

Profile done over 1 matching functions
The pattern can be a module name, such as String to count all calls to that module,
a call without arity, such as String.split, to count all calls to that function
regardless of arity, or a call with arity, such as String.split/3, to count all
calls to that exact module, function and arity.

 Caveats

You should be aware that the code being profiled is running in an anonymous
function which is invoked by :eprof module.
Thus, you'll see some additional entries in your profile output. It is also
important to note that the profiler is stopped as soon as the code has finished running,
and this may need special attention, when: running asynchronous code as function calls which were
called before the profiler stopped will not be counted; running synchronous code as long
running computations and a profiler without a proper MFA trace pattern or filter may
lead to a result set which is difficult to comprehend.
You should expect a slowdown in your code execution using this tool since :eprof has
some performance impact on the execution, but the impact is considerably lower than
Mix.Tasks.Profile.Fprof. If you have a large system try to profile a limited
scenario or focus on the main modules or processes. Another alternative is to use
Mix.Tasks.Profile.Cprof that uses :cprof and has a low performance degradation effect.

 Summary

 Functions

 profile(fun, opts \\ [])

 Allows to programmatically run the eprof profiler on expression in fun.

 Functions

 Link to this function

 profile(fun, opts \\ [])

 View Source

 @spec profile(
 (-> result),
 keyword()
) :: result
when result: any()

Allows to programmatically run the eprof profiler on expression in fun.
Returns the return value of fun.

 Options

	:matching - only profile calls matching the given pattern in form of
{module, function, arity}, where each element may be replaced by :_
to allow any value
	:calls - filters out any results with a call count lower than this
	:time - filters out any results that took lower than specified (in µs)
	:sort - sort the results by :time or :calls (default: :time)
	:warmup - if the code should be warmed up before profiling (default: true)
	:set_on_spawn - if newly spawned processes should be measured (default: true)

mix profile.fprof

Profiles the given file or expression using Erlang's fprof tool.
fprof can be useful when you want to discover the bottlenecks of a
sequential code.
Before running the code, it invokes the app.start task which compiles
and loads your project. After that, the target expression is profiled, together
with all processes which are spawned by it. Other processes (for example, those
residing in the OTP application supervision tree) are not profiled.
To profile the code, you can use syntax similar to the mix run task:
$ mix profile.fprof -e Hello.world
$ mix profile.fprof my_script.exs arg1 arg2 arg3

This task is automatically re-enabled, so you can profile multiple times
in the same Mix invocation.

 Command line options

	--callers - prints detailed information about immediate callers and called functions
	--details - includes profile data for each profiled process
	--sort key - sorts the output by given key: acc (default) or own
	--trace-to-file - uses a file to trace. Can improve performance and memory
usage for larger workloads
	--eval, -e - evaluates the given code
	--require, -r - requires pattern before running the command
	--parallel, -p - makes all requires parallel
	--no-compile - does not compile even if files require compilation
	--no-deps-check - does not check dependencies
	--no-archives-check - does not check archives
	--no-start - does not start applications after compilation
	--no-elixir-version-check - does not check the Elixir version from mix.exs
	--no-warmup - does not execute code once before profiling

 Profile output

Example output:
CNT ACC (ms) OWN (ms)
Total 200279 1972.188 1964.579
:fprof.apply_start_stop/4 0 1972.188 0.012
anonymous fn/0 in :elixir_compiler_2 1 1972.167 0.001
Test.run/0 1 1972.166 0.007
Test.do_something/1 3 1972.131 0.040
Test.bottleneck/0 1 1599.490 0.007
...
The default output contains data gathered from all profiled processes.
All times are wall clock milliseconds. The columns have the following meaning:
	CNT - total number of invocations of the given function
	ACC - total time spent in the function
	OWN - time spent in the function, excluding the time of called functions

The first row (Total) is the sum of all functions executed in all profiled
processes. For the given output, we had a total of 200279 function calls and spent
about 2 seconds running the code.
More detailed information is returned if you provide the --callers and
--details options.
When --callers option is specified, you'll see expanded function entries:
Mod.caller1/0 3 200.000 0.017
Mod.caller2/0 2 100.000 0.017
 Mod.some_function/0 5 300.000 0.017 <--
 Mod.called1/0 4 250.000 0.010
 Mod.called2/0 1 50.000 0.030
Here, the arrow (<--) indicates the marked function - the function
described by this paragraph. You also see its immediate callers (above) and
called functions (below).
All the values of caller functions describe the marked function. For example,
the first row means that Mod.caller1/0 invoked Mod.some_function/0 3 times.
200ms of the total time spent in Mod.some_function/0 was spent processing
calls from this particular caller.
In contrast, the values for the called functions describe those functions, but
in the context of the marked function. For example, the last row means that
Mod.called2/0 was called once by Mod.some_function/0, and in that case
the total time spent in the function was 50ms.
For a detailed explanation it's worth reading the analysis in
Erlang/OTP documentation for fprof.

 Caveats

You should be aware that the code being profiled is running in an anonymous
function which is invoked by :fprof module.
Thus, you'll see some additional entries in your profile output,
such as :fprof calls, an anonymous
function with high ACC time, or an :undefined function which represents
the outer caller (non-profiled code which started the profiler).
Also, keep in mind that profiling might significantly increase the running time
of the profiled processes. This might skew your results if, for example, those
processes perform some I/O operations, since running time of those operations
will remain unchanged, while CPU bound operations of the profiled processes
might take significantly longer. Thus, when profiling some intensive program,
try to reduce such dependencies, or be aware of the resulting bias.
Finally, it's advised to profile your program with the prod environment, since
this should provide more realistic insights into bottlenecks.

 Summary

 Functions

 profile(fun, opts \\ [])

 Allows to programmatically run the fprof profiler on expression in fun.

 Functions

 Link to this function

 profile(fun, opts \\ [])

 View Source

 @spec profile(
 (-> result),
 keyword()
) :: result
when result: any()

Allows to programmatically run the fprof profiler on expression in fun.
Returns the return value of fun.

 Options

	:callers - prints detailed information about immediate callers and called functions
	:details - includes profile data for each profiled process
	:sort - sorts the output by given key: :acc (default) or :own
	:trace_to_file - uses a file to trace. Can improve performance and memory
usage for larger workloads.

mix release

Assembles a self-contained release for the current project:
$ MIX_ENV=prod mix release
$ MIX_ENV=prod mix release NAME

Once a release is assembled, it can be packaged and deployed to a
target, as long as the target runs on the same operating system (OS)
distribution and version as the machine running the mix release
command.
A release can be configured in your mix.exs file under the :releases
key inside def project:
def project do
 [
 releases: [
 demo: [
 include_executables_for: [:unix],
 applications: [runtime_tools: :permanent]
],

 ...
]
]
end
You can specify multiple releases where the key is the release name
and the value is a keyword list with the release configuration.
Releasing a certain name is done with:
$ MIX_ENV=prod mix release demo

If the given name does not exist, an error is raised.
If mix release is invoked, without specifying a release name, and
there are multiple releases configured, an error will be raised
unless you set default_release: NAME at the root of your project
configuration.
If mix release is invoked and there are no releases configured, a
release is assembled using the application name and default values.

 Why releases?

Releases allow developers to precompile and package all of their code
and the runtime into a single unit. The benefits of releases are:
	Code preloading. The VM has two mechanisms for loading code:
interactive and embedded. By default, it runs in the interactive
mode which dynamically loads modules when they are used for the
first time. The first time your application calls Enum.map/2,
the VM will find the Enum module and load it. There's a downside:
when you start a new server in production, it may need to load
many other modules, causing the first requests to have an unusual
spike in response time. With releases, the system preloads
all modules and guarantees your system is ready to handle requests
after booting.

	Configuration and customization. Releases give developers fine
grained control over system configuration and the VM flags used
to start the system.

	Self-contained. A release does not require the source code to be
included in your production artifacts. All of the code is precompiled
and packaged. Releases do not even require Erlang or Elixir in your
servers, as it includes the Erlang VM and its runtime by default.
Furthermore, both Erlang and Elixir standard libraries are stripped
to bring only the parts you are actually using.

	Multiple releases. You can assemble different releases with
different configuration per application or even with different
applications altogether.

	Management scripts. Releases come with scripts to start, restart,
connect to the running system remotely, execute RPC calls, run as
daemon, run as a Windows service, and more.

 Running the release

Once a release is assembled, you can start it by calling
bin/RELEASE_NAME start inside the release. In production, you would do:
$ MIX_ENV=prod mix release
$ _build/prod/rel/my_app/bin/my_app start

bin/my_app start will start the system connected to the current standard
input/output, where logs are also written to by default. This is the
preferred way to run the system. Many tools, such as systemd, platforms
as a service, such as Heroku, and many containers platforms, such as Docker,
are capable of processing the standard input/output and redirecting
the log contents elsewhere. Those tools and platforms also take care
of restarting the system in case it crashes.
You can also execute one-off commands, run the release as a daemon on
Unix-like system, or install it as a service on Windows. We will take a
look at those next. You can also list all available commands by invoking
bin/RELEASE_NAME.

 One-off commands (eval and rpc)

If you want to invoke specific modules and functions in your release,
you can do so in two ways: using eval or rpc.
$ bin/RELEASE_NAME eval "IO.puts(:hello)"
$ bin/RELEASE_NAME rpc "IO.puts(:hello)"

The eval command starts its own instance of the VM but without
starting any of the applications in the release and without starting
distribution. For example, if you need to do some prep work before
running the actual system, like migrating your database, eval can
be a good fit. Just keep in mind any application you may use during
eval has to be explicitly started.
You can start an application by calling Application.ensure_all_started/1.
From Elixir v1.16, it is guaranteed the applications have been
at least loaded. In earlier versions, if you needed to load applications
but not start them, you also needed to call Application.load/1.
Another way to run commands is with rpc, which will connect to the
system currently running and instruct it to execute the given
expression. This means you need to guarantee the system was already
started and be careful with the instructions you are executing.
You can also use remote to connect a remote IEx session to the
system.
Helper module
As you operate your system, you may find yourself running some piece of code
as a one-off command quite often. You may consider creating a module to group
these tasks:
lib/my_app/release_tasks.ex
defmodule MyApp.ReleaseTasks do
 def eval_purge_stale_data() do
 # Eval commands needs to start the app before
 # Or Application.load(:my_app) if you can't start it
 Application.ensure_all_started(:my_app)

 # Code that purges stale data
 ...
 end

 def rpc_print_connected_users() do
 # Code that print users connected to the current running system
 ...
 end
end
In the example above, we prefixed the function names with the command
name used to execute them, but that is entirely optional.
And to run them:
$ bin/RELEASE_NAME eval "MyApp.ReleaseTasks.eval_purge_stale_data()"
$ bin/RELEASE_NAME rpc "MyApp.ReleaseTasks.rpc_print_connected_users()"

 Daemon mode (Unix-like)

You can run the release in daemon mode with the command:
$ bin/RELEASE_NAME daemon

In daemon mode, the system is started on the background via
run_erl. You may also
want to enable heart
in daemon mode so it automatically restarts the system in case
of crashes. See the generated releases/RELEASE_VSN/env.sh file.
The daemon will write all of its standard output to the "tmp/log/"
directory in the release root. You can watch the log file by doing
tail -f tmp/log/erlang.log.1 or similar. Once files get too large,
the index suffix will be incremented. A developer can also attach
to the standard input of the daemon by invoking "to_erl tmp/pipe/"
from the release root. However, note that attaching to the system
should be done with extreme care, since the usual commands for
exiting an Elixir system, such as hitting Ctrl+C twice or Ctrl+\,
will actually shut down the daemon. Therefore, using
bin/RELEASE_NAME remote should be preferred, even in daemon mode.
You can customize the tmp directory used both for logging and for
piping in daemon mode by setting the RELEASE_TMP environment
variable. See the "Customization" section.

 Services mode (Windows)

While daemons are not available on Windows, it is possible to install a
released system as a service on Windows with the help of
erlsrv. This can be done by
running:
$ bin/RELEASE_NAME install

Once installed, the service must be explicitly managed via the erlsrv
executable, which is included in the erts-VSN/bin directory.
The service is not started automatically after installing.
For example, if you have a release named demo, you can install
the service and then start it from the release root as follows:
$ bin/demo install
$ erts-VSN/bin/erlsrv.exe start demo_demo

The name of the service is demo_demo because the name is built
by concatenating the node name with the release name. Since Elixir
automatically uses the same name for both, the service will be
referenced as demo_demo.
The install command must be executed as an administrator.

 bin/RELEASE_NAME commands

The following commands are supported by bin/RELEASE_NAME:
start Starts the system
start_iex Starts the system with IEx attached
daemon Starts the system as a daemon (Unix-like only)
daemon_iex Starts the system as a daemon with IEx attached (Unix-like only)
install Installs this system as a Windows service (Windows only)
eval "EXPR" Executes the given expression on a new, non-booted system
rpc "EXPR" Executes the given expression remotely on the running system
remote Connects to the running system via a remote shell
restart Restarts the running system via a remote command
stop Stops the running system via a remote command
pid Prints the operating system PID of the running system via a remote command
version Prints the release name and version to be booted

 Deployments

 Requirements

A release is built on a host, a machine which contains Erlang, Elixir,
and any other dependencies needed to compile your application. A release is
then deployed to a target, potentially the same machine as the host,
but usually separate, and often there are many targets (either multiple
instances, or the release is deployed to heterogeneous environments).
To deploy straight from a host to a separate target without cross-compilation,
the following must be the same between the host and the target:
	Target architecture (for example, x86_64 or ARM)
	Target vendor + operating system (for example, Windows, Linux, or Darwin/macOS)
	Target ABI (for example, musl or gnu)

This is often represented in the form of target triples, for example,
x86_64-unknown-linux-gnu, x86_64-unknown-linux-musl, x86_64-apple-darwin.
So to be more precise, to deploy straight from a host to a separate target,
the Erlang Runtime System (ERTS), and any native dependencies (NIFs), must
be compiled for the same target triple. If you are building on a MacBook
(x86_64-apple-darwin) and trying to deploy to a typical Ubuntu machine
(x86_64-unknown-linux-gnu), the release will not work. Instead you should
build the release on a x86_64-unknown-linux-gnu host. As we will see, this
can be done in multiple ways, such as releasing on the target itself, or by
using virtual machines or containers, usually as part of your release pipeline.
In addition to matching the target triple, it is also important that the
target has all of the system packages that your application will need at
runtime. A common one is the need for OpenSSL when building an application
that uses :crypto or :ssl, which is dynamically linked to ERTS. The other
common source for native dependencies like this comes from dependencies
containing NIFs (natively-implemented functions) which may expect to
dynamically link to libraries they use.
Of course, some operating systems and package managers can differ between
versions, so if your goal is to have full compatibility between host and
target, it is best to ensure the operating system and system package manager
have the same versions on host and target. This may even be a requirement in
some systems, especially so with package managers that try to create fully
reproducible environments (Nix, Guix).
Similarly, when creating a stand-alone package and release for Windows, note
the Erlang Runtime System has a dependency to some Microsoft libraries
(Visual C++ Redistributable Packages for Visual Studio 2013). These libraries
are installed (if not present before) when Erlang is installed but it is not
part of the standard Windows environment. Deploying a stand-alone release on
a computer without these libraries will result in a failure when trying to
run the release. One way to solve this is to download and install these
Microsoft libraries the first time a release is deployed (the Erlang installer
version 10.6 ships with “Microsoft Visual C++ 2013 Redistributable - 12.0.30501”).
Alternatively, you can also bundle the compiled object files in the release,
as long as they were compiled for the same target. If doing so, you need to
update LD_LIBRARY_PATH environment variable with the paths containing the
bundled objects on Unix-like systems or the $PATH environment variable on
Windows systems.
Currently, there is no official way to cross-compile a release from one
target triple to another, due to the complexities involved in the process.

 Techniques

There are a couple of ways to guarantee that a release is built on a host with
the same properties as the target. A simple option is to fetch the source,
compile the code and assemble the release on the target itself. It would
be something like this:
$ git clone remote://path/to/my_app.git my_app_source
$ cd my_app_source
$ mix deps.get --only prod
$ MIX_ENV=prod mix release
$ _build/prod/rel/my_app/bin/my_app start

If you prefer, you can also compile the release to a separate directory,
so you can erase all source after the release is assembled:
$ git clone remote://path/to/my_app.git my_app_source
$ cd my_app_source
$ mix deps.get --only prod
$ MIX_ENV=prod mix release --path ../my_app_release
$ cd ../my_app_release
$ rm -rf ../my_app_source
$ bin/my_app start

However, this option can be expensive if you have multiple production
nodes or if the release assembling process is a long one, as each node
needs to individually assemble the release.
You can automate this process in a couple different ways. One option
is to make it part of your Continuous Integration (CI) / Continuous
Deployment (CD) pipeline. When you have a CI/CD pipeline, it is common
that the machines in your CI/CD pipeline run on the exact same target
triple as your production servers (if they don't, they should).
In this case, you can assemble the release at the end of your CI/CD
pipeline by calling MIX_ENV=prod mix release and push the artifact
to S3 or any other network storage. To perform the deployment, your
production machines can fetch the deployment from the network storage
and run bin/my_app start.
Another mechanism to automate deployments is to use images, such as
Amazon Machine Images, or container platforms, such as Docker.
For instance, you can use Docker to run locally a system with the
exact same target triple as your production servers. Inside the
container, you can invoke MIX_ENV=prod mix release and build
a complete image and/or container with the operating system, all
dependencies as well as the releases.
In other words, there are multiple ways systems can be deployed and
releases can be automated and incorporated into all of them as long
as you remember to build the system in the same target triple.
Once a system is deployed, shutting down the system can be done by
sending SIGINT/SIGTERM to the system, which is what most containers,
platforms and tools do, or by explicitly invoking bin/RELEASE_NAME stop.
Once the system receives the shutdown request, each application and
their respective supervision trees will stop, one by one, in the
opposite order that they were started.

 Customization

There are a couple ways in which developers can customize the generated
artifacts inside a release.

 Options

The following options can be set inside your mix.exs on each release definition:
	:applications - a keyword list with application names as keys and their
mode as value. By default :applications includes the current application and
all applications the current application depends on, recursively. You can include
new applications or change the mode of existing ones by listing them here.
The order of the applications given will be preserved as much as possible, with
only :kernel, :stdlib, :sasl, and :elixir listed before the given application
list. The supported values are:
	:permanent (default) - the application is started and the node shuts down
if the application terminates, regardless of reason
	:transient - the application is started and the node shuts down
if the application terminates abnormally
	:temporary - the application is started and the node does not
shut down if the application terminates
	:load - the application is only loaded
	:none - the application is part of the release but it is neither
loaded nor started

If you change the mode of an application, the mode will apply to all its child
applications. However, if an application has two parents, the mode of the parent
with highest priority wins (where :permanent has the highest priority, according
to the list above).

	:strip_beams - controls if BEAM files should have their debug information,
documentation chunks, and other non-essential metadata removed. Defaults to
true. May be set to false to disable stripping. Also accepts
[keep: ["Docs", "Dbgi"]] to keep certain chunks that are usually stripped.
You can also set the :compress option to true to enable individual
compression of BEAM files, although it is typically preferred to compress
the whole release instead.

	:cookie - a string representing the Erlang Distribution cookie. If this
option is not set, a random cookie is written to the releases/COOKIE file
when the first release is assembled. At runtime, we will first attempt
to fetch the cookie from the RELEASE_COOKIE environment variable and
then we'll read the releases/COOKIE file.
If you are setting this option manually, we recommend the cookie option
to be a long and randomly generated string, such as:
Base.url_encode64(:crypto.strong_rand_bytes(40)). We also recommend to restrict
the characters in the cookie to the subset returned by Base.url_encode64/1.

	:validate_compile_env - by default a release will match all runtime
configuration against any configuration that was marked at compile time
in your application of its dependencies via the Application.compile_env/3
function. If there is a mismatch between those, it means your system is
misconfigured and unable to boot. You can disable this check by setting
this option to false.

	:path - the path the release should be installed to.
Defaults to "_build/MIX_ENV/rel/RELEASE_NAME".

	:version - the release version as a string or {:from_app, app_name}.
Defaults to the current application version. The {:from_app, app_name} format
can be used to easily reference the application version from another application.
This is particularly useful in umbrella applications.

	:quiet - a boolean that controls if releases should write steps to
the standard output. Defaults to false.

	:include_erts - a boolean, string, or anonymous function of arity zero.
If a boolean, it indicates whether the Erlang Runtime System (ERTS), which
includes the Erlang VM, should be included in the release. The default is
true, which is also the recommended value. If a string, it represents
the path to an existing ERTS installation. If an anonymous function of
arity zero, it's a function that returns any of the above (boolean or string).
You may also set this option to false if you desire to use the ERTS version installed
on the target. Note, however, that the ERTS version on the target must have the
exact version as the ERTS version used when the release is assembled. Setting it to
false also disables hot code upgrades. Therefore, :include_erts should be
set to false with caution and only if you are assembling the release on the
same server that runs it.

	:include_executables_for - a list of atoms detailing for which Operating
Systems executable files should be generated for. By default, it is set to
[:unix, :windows]. You can customize those as follows:
releases: [
 demo: [
 include_executables_for: [:unix] # Or [:windows] or []
]
]

	:rel_templates_path - the path to find template files that are copied to
the release, such as "vm.args.eex", "remote.vm.args.eex", "env.sh.eex"
(or "env.bat.eex"), and "overlays". Defaults to "rel" in the project root.

	:overlays - a list of directories with extra files to be copied
as is to the release. The "overlays" directory at :rel_templates_path
is always included in this list by default (typically at "rel/overlays").
See the "Overlays" section for more information.

	:steps - a list of steps to execute when assembling the release. See
the "Steps" section for more information.

	:skip_mode_validation_for - a list of application names
(atoms) specifying applications to skip strict validation of
"unsafe" modes. An "unsafe" case is when a parent application
mode is :permanent but one of the applications it depends on
is set to :load. Use this with care, as a release with
invalid modes may no longer boot without additional tweaks.
Defaults to [].

Note each release definition can be given as an anonymous function. This
is useful if some release attributes are expensive to compute:
releases: [
 demo: fn ->
 [version: @version <> "+" <> git_ref()]
 end
]
Besides the options above, it is possible to customize the generated
release with custom files, by tweaking the release steps or by running
custom options and commands on boot. We will detail both approaches next.

 Overlays

Often it is necessary to copy extra files to the release root after
the release is assembled. This can be easily done by placing such
files in the rel/overlays directory. Any file in there is copied
as is to the release root. For example, if you have placed a
"rel/overlays/Dockerfile" file, the "Dockerfile" will be copied as
is to the release root.
If you want to specify extra overlay directories, you can do so
with the :overlays option. If you need to copy files dynamically,
see the "Steps" section.

 Steps

It is possible to add one or more steps before and after the release is
assembled. This can be done with the :steps option:
releases: [
 demo: [
 steps: [&set_configs/1, :assemble, ©_extra_files/1]
]
]
The :steps option must be a list and it must always include the
atom :assemble, which does most of the release assembling. You
can pass anonymous functions before and after the :assemble to
customize your release assembling pipeline. Those anonymous functions
will receive a Mix.Release struct and must return the same or
an updated Mix.Release struct. It is also possible to build a tarball
of the release by passing the :tar step anywhere after :assemble.
If the release :path is not configured, the tarball is created in
_build/MIX_ENV/RELEASE_NAME-RELEASE_VSN.tar.gz Otherwise it is
created inside the configured :path.
See Mix.Release for more documentation on the struct and which
fields can be modified. Note that the :steps field itself can be
modified and it is updated every time a step is called. Therefore,
if you need to execute a command before and after assembling the
release, you only need to declare the first steps in your pipeline
and then inject the last step into the release struct. The steps
field can also be used to verify if the step was set before or
after assembling the release.

 vm.args and env.sh (env.bat)

Developers may want to customize the VM flags and environment variables
given when the release starts. The simplest way to customize those files
is by running mix release.init. The Mix task will copy custom
rel/vm.args.eex, rel/remote.vm.args.eex, rel/env.sh.eex, and
rel/env.bat.eex files to your project root. You can modify those files
and they will be evaluated every time you perform a new release. Those
files are regular EEx templates and they have a single assign, called
@release, with the Mix.Release struct.
The vm.args and remote.vm.args files may contain any of the VM flags
accepted by the erl command.
The env.sh and env.bat is used to set environment variables.
In there, you can set vars such as RELEASE_NODE, RELEASE_COOKIE,
and RELEASE_TMP to customize your node name, cookie and tmp
directory respectively. Whenever env.sh or env.bat is invoked,
the variables RELEASE_ROOT, RELEASE_NAME, RELEASE_VSN, and
RELEASE_COMMAND have already been set, so you can rely on them.
See the section on environment variables for more information.
Furthermore, while the vm.args files are static, you can use
env.sh and env.bat to dynamically set VM options. For example,
if you want to make sure the Erlang Distribution listens only on
a given port known at runtime, you can set the following:
case $RELEASE_COMMAND in
 start*|daemon*)
 ELIXIR_ERL_OPTIONS="-kernel inet_dist_listen_min $BEAM_PORT inet_dist_listen_max $BEAM_PORT"
 export ELIXIR_ERL_OPTIONS
 ;;
 *)
 ;;
esac

Note we only set the port on start/daemon commands. If you also limit
the port on other commands, such as rpc, then you will be unable
to establish a remote connection as the port will already be in use
by the node.
On Windows, your env.bat would look like this:
IF NOT %RELEASE_COMMAND:start=%==%RELEASE_COMMAND% (
 set ELIXIR_ERL_OPTIONS="-kernel inet_dist_listen_min %BEAM_PORT% inet_dist_listen_max %BEAM_PORT%"
)

Inside env.sh and env.bat files you can access command-line arguments given to release commands.
For example, given this env.sh.eex:
echo $@

or this env.bat.eex:
echo %*

starting the release with bin/myapp start --foo bar baz will print start --foo bar baz.

 Application configuration

Mix provides two mechanisms for configuring the application environment
of your application and your dependencies: build-time and runtime. On this
section, we will learn how those mechanisms apply to releases. An introduction
to this topic can be found in the "Configuration" section of the Mix module.

 Build-time configuration

Whenever you invoke a mix command, Mix loads the configuration in
config/config.exs, if said file exists. We say that this configuration
is a build-time configuration as it is evaluated whenever you compile your
code or whenever you assemble the release.
In other words, if your configuration does something like:
import Config
config :my_app, :secret_key, System.fetch_env!("MY_APP_SECRET_KEY")
The :secret_key key under :my_app will be computed on the
host machine, whenever the release is built. Therefore if the machine
assembling the release not have access to all environment variables used
to run your code, loading the configuration will fail as the environment
variable is missing. Luckily, Mix also provides runtime configuration,
which should be preferred and we will see next.

 Runtime configuration

To enable runtime configuration in your release, all you need to do is
to create a file named config/runtime.exs:
import Config
config :my_app, :secret_key, System.fetch_env!("MY_APP_SECRET_KEY")
This file will be executed whenever your Mix project or your release
starts.
Your config/runtime.exs file needs to follow three important rules:
	It MUST import Config at the top instead of the deprecated use Mix.Config
	It MUST NOT import any other configuration file via import_config
	It MUST NOT access Mix in any way, as Mix is a build tool and
it is not available inside releases

If a config/runtime.exs exists, it will be copied to your release
and executed early in the boot process, when only Elixir and Erlang's
main applications have been started.
You can change the path to the runtime configuration file by setting
:runtime_config_path inside each release configuration. This path is
resolved at build time as the given configuration file is always copied
to inside the release:
releases: [
 demo: [
 runtime_config_path: ...
]
]
By setting :runtime_config_path to false it can be used to prevent
a runtime configuration file to be included in the release.

 Config providers

Releases also supports custom mechanisms, called config providers, to load
any sort of runtime configuration to the system while it boots. For instance,
if you need to access a vault or load configuration from a JSON file, it can
be achieved with config providers. The runtime configuration outlined in the
previous section is handled by the Config.Reader provider. See the
Config.Provider module for more information and more examples.
The following options can be set inside your releases key in your mix.exs
to control how config providers work:
	:reboot_system_after_config - reboot the system after configuration
so you can configure system applications, such as :kernel and :stdlib,
in your config/runtime.exs. Generally speaking, it is best to configure
:kernel and :stdlib using the vm.args file but this option is available
for those who need more complex configuration. When set to true, the
release will first boot in interactive mode to compute a config file and
write it to the "tmp" directory. Then it reboots in the configured RELEASE_MODE.
You can configure the "tmp" directory by setting the RELEASE_TMP environment
variable, either explicitly or inside your releases/RELEASE_VSN/env.sh
(or env.bat on Windows). Defaults to true if using the deprecated
config/releases.exs, false otherwise.

	:prune_runtime_sys_config_after_boot - if :reboot_system_after_config
is set, every time your system boots, the release will write a config file
to your tmp directory. These configuration files are generally small.
But if you are concerned with disk space or if you have other restrictions,
you can ask the system to remove said config files after boot. The downside
is that you will no longer be able to restart the system internally (neither
via System.restart/0 nor bin/RELEASE_NAME restart). If you need a restart,
you will have to terminate the Operating System process and start a new
one. Defaults to false.

	:start_distribution_during_config - if :reboot_system_after_config is
set, releases only start the Erlang VM distribution features after the config
files are evaluated. You can set it to true if you need distribution during
configuration. Defaults to false.

	:config_providers - a list of tuples with custom config providers.
See Config.Provider for more information. Defaults to [].

 Customization and configuration summary

Generally speaking, the following files are available for customizing
and configuring the running system:
	config/config.exs (and config/prod.exs) - provides build-time
application configuration, which are executed when the release is
assembled

	config/runtime.exs - provides runtime application configuration.
It is executed every time your Mix project or your release boots
and is further extensible via config providers. If you want to
detect you are inside a release, you can check for release specific
environment variables, such as RELEASE_NODE or RELEASE_MODE

	rel/vm.args.eex and rel/remote.vm.args.eex - template files that
are copied into every release and provides static configuration of the
Erlang Virtual Machine and other runtime flags. vm.args runs on
start, daemon, and eval commands. remote.vm.args configures
the VM for remote and rpc commands

	rel/env.sh.eex and rel/env.bat.eex - template files that are copied
into every release and are executed on every command to set up environment
variables, including specific ones to the VM, and the general environment

 Directory structure

A release is organized as follows:
bin/
 RELEASE_NAME
erts-ERTS_VSN/
lib/
 APP_NAME-APP_VSN/
 ebin/
 include/
 priv/
releases/
 RELEASE_VSN/
 consolidated/
 elixir
 elixir.bat
 env.bat
 env.sh
 iex
 iex.bat
 remote.vm.args
 runtime.exs
 start.boot
 start.script
 start_clean.boot
 start_clean.script
 sys.config
 vm.args
 COOKIE
 start_erl.data
tmp/
We document this structure for completeness. In practice, developers
should not modify any of those files after the release is assembled.
Instead use env scripts, custom config provider, overlays, and all
other mechanisms described in this guide to configure how your release
works.

 Environment variables

The system sets different environment variables. The following variables
are set early on and can only be read by env.sh and env.bat:
	RELEASE_ROOT - points to the root of the release. If the system
includes ERTS, then it is the same as :code.root_dir/0. This
variable is always computed and it cannot be set to a custom value

	RELEASE_COMMAND - the command given to the release, such as "start",
"remote", "eval", and so on. This is typically accessed inside env.sh
and env.bat to set different environment variables under different
conditions. Note, however, that RELEASE_COMMAND has not been
validated by the time env.sh and env.bat are called, so it may
be empty or contain invalid values. This variable is always computed
and it cannot be set to a custom value

	RELEASE_NAME - the name of the release. It can be set to a custom
value when invoking the release

	RELEASE_VSN - the version of the release, otherwise the latest
version is used. It can be set to a custom value when invoking the
release. The custom value must be an existing release version in
the releases/ directory

	RELEASE_PROG - the command line executable used to start the release

The following variables can be set before you invoke the release or
inside env.sh and env.bat:
	RELEASE_COOKIE - the release cookie. By default uses the value
in releases/COOKIE. It can be set to a custom value

	RELEASE_NODE - the release node name, in the format name or
optionally name@host if running in distributed mode. It can be
set to a custom value. The name part must be made only of letters,
digits, underscores, and hyphens

	RELEASE_SYS_CONFIG - the location of the sys.config file. It can
be set to a custom path and it must not include the .config extension

	RELEASE_VM_ARGS - the location of the vm.args file. It can be set
to a custom path

	RELEASE_REMOTE_VM_ARGS - the location of the remote.vm.args file.
It can be set to a custom path

	RELEASE_TMP - the directory in the release to write temporary
files to. It can be set to a custom directory. It defaults to
$RELEASE_ROOT/tmp

	RELEASE_MODE - if the release should load code on demand (interactive)
or preload it (embedded). Defaults to "embedded", which increases boot
time but it means the runtime will respond faster as it doesn't have to
load code. Choose interactive if you need to decrease boot time and reduce
memory usage on boot. It applies only to start/daemon/install commands

	RELEASE_DISTRIBUTION - how do we want to run the distribution.
May be name (long names), sname (short names) or none
(distribution is not started automatically). Defaults to
sname which allows access only within the current system.
name allows external connections

	RELEASE_BOOT_SCRIPT - the name of the boot script to use when starting
the release. This script is used when running commands such as start and
daemon. The boot script is expected to be located at the
path releases/RELEASE_VSN/RELEASE_BOOT_SCRIPT.boot. Defaults to start

	RELEASE_BOOT_SCRIPT_CLEAN - the name of the boot script used when
starting the release clean, without your application or its dependencies.
This script is used by commands such as eval, rpc, and remote.
The boot script is expected to be located at the path
releases/RELEASE_VSN/RELEASE_BOOT_SCRIPT_CLEAN.boot. Defaults
to start_clean

 Umbrellas

Releases are well integrated with umbrella projects, allowing you to
release one or more subsets of your umbrella children. The only difference
between performing a release in the umbrella project compared to a
regular application is that umbrellas require you to explicitly list
your release and the starting point for each release. For example,
imagine this umbrella applications:
my_app_umbrella/
 apps/
 my_app_core/
 my_app_event_processing/
 my_app_web/
where both my_app_event_processing and my_app_web depend on
my_app_core but they do not depend on each other.
Inside your umbrella, you can define multiple releases:
releases: [
 web_and_event_processing: [
 applications: [
 my_app_event_processing: :permanent,
 my_app_web: :permanent
]
],

 web_only: [
 applications: [my_app_web: :permanent]
],

 event_processing_only: [
 applications: [my_app_event_processing: :permanent]
]
]
Note you don't need to define all applications in :applications,
only the entry points. Also remember that the recommended mode
for all applications in the system is :permanent.
Finally, keep in mind it is not required for you to assemble the
release from the umbrella root. You can also assemble the release
from each child application individually. Doing it from the root,
however, allows you to include two applications that do not depend
on each other as part of the same release.

 Hot Code Upgrades

Erlang and Elixir are sometimes known for the capability of upgrading
a node that is running in production without shutting down that node.
However, this feature is not supported out of the box by Elixir releases.
The reason we don't provide hot code upgrades is because they are very
complicated to perform in practice, as they require careful coding of
your processes and applications as well as extensive testing. Given most
teams can use other techniques that are language agnostic to upgrade
their systems, such as Blue/Green deployments, Canary deployments,
Rolling deployments, and others, hot upgrades are rarely a viable
option. Let's understand why.
In a hot code upgrade, you want to update a node from version A to
version B. To do so, the first step is to write recipes for every application
that changed between those two releases, telling exactly how the application
changed between versions, those recipes are called .appup files.
While some of the steps in building .appup files can be automated,
not all of them can. Furthermore, each process in the application needs
to be explicitly coded with hot code upgrades in mind. Let's see an example.
Imagine your application has a counter process as a GenServer:
defmodule Counter do
 use GenServer

 def start_link(_) do
 GenServer.start_link(__MODULE__, :ok, name: __MODULE__)
 end

 def bump do
 GenServer.call(__MODULE__, :bump)
 end

 ## Callbacks

 def init(:ok) do
 {:ok, 0}
 end

 def handle_call(:bump, counter) do
 {:reply, :ok, counter + 1}
 end
end
You add this process as part of your supervision tree and ship version
0.1.0 of your system. Now let's imagine that on version 0.2.0 you added
two changes: instead of bump/0, that always increments the counter by
one, you introduce bump/1 that passes the exact value to bump the
counter. You also change the state, because you want to store the maximum
bump value:
defmodule Counter do
 use GenServer

 def start_link(_) do
 GenServer.start_link(__MODULE__, :ok, name: __MODULE__)
 end

 def bump(by) do
 GenServer.call(__MODULE__, {:bump, by})
 end

 ## Callbacks

 def init(:ok) do
 {:ok, {0, 0}}
 end

 def handle_call({:bump, by}, {counter, max}) do
 {:reply, :ok, {counter + by, max(max, by)}}
 end
end
If you were to perform a hot code upgrade in such an application, it would
crash, because in the initial version the state was just a counter
but in the new version the state is a tuple. Furthermore, you changed
the format of the call message from :bump to {:bump, by} and
the process may have both old and new messages temporarily mixed, so
we need to handle both. The final version would be:
defmodule Counter do
 use GenServer

 def start_link(_) do
 GenServer.start_link(__MODULE__, :ok, name: __MODULE__)
 end

 def bump(by) do
 GenServer.call(__MODULE__, {:bump, by})
 end

 ## Callbacks

 def init(:ok) do
 {:ok, {0, 0}}
 end

 def handle_call(:bump, {counter, max}) do
 {:reply, :ok, {counter + 1, max(max, 1)}}
 end

 def handle_call({:bump, by}, {counter, max}) do
 {:reply, :ok, {counter + by, max(max, by)}}
 end

 def code_change(_, counter, _) do
 {:ok, {counter, 0}}
 end
end
Now you can proceed to list this process in the .appup file and
hot code upgrade it. This is one of the many steps necessary
to perform hot code upgrades and it must be taken into account by
every process and application being upgraded in the system.
The .appup cookbook
provides a good reference and more examples.
Once .appups are created, the next step is to create a .relup
file with all instructions necessary to update the release itself.
Erlang documentation does provide a chapter on
Creating and upgrading a target system.
Learn You Some Erlang has a chapter on hot code upgrades.
Overall, there are many steps, complexities and assumptions made
during hot code upgrades, which is ultimately why they are not
provided by Elixir out of the box. However, hot code upgrades can
still be achieved by teams who desire to implement those steps
on top of mix release in their projects or as separate libraries.

 Command line options

	--force - forces recompilation
	--no-archives-check - does not check archive
	--no-deps-check - does not check dependencies
	--no-elixir-version-check - does not check Elixir version
	--no-compile - does not compile before assembling the release
	--overwrite - overwrite existing files instead of prompting the user for action
	--path - the path of the release
	--quiet - does not write progress to the standard output
	--version - the version of the release

mix release.init

Generates sample files for releases.
$ mix release.init
* creating rel/vm.args.eex
* creating rel/remote.vm.args.eex
* creating rel/env.sh.eex
* creating rel/env.bat.eex

mix run

Runs the current application.
mix run starts the current application dependencies and the
application itself. The application will be compiled if it has
not been compiled yet or it is outdated.
mix run may also run code in the application context through
additional options. For example, to run a script within the
current application, you may pass a filename as argument:
$ mix run my_app_script.exs arg1 arg2 arg3

Code to be executed can also be passed inline with the -e option:
$ mix run -e "DbUtils.delete_old_records()" -- arg1 arg2 arg3

In both cases, the command-line arguments for the script or expression
are available in System.argv/0. This mirror the command line interface
in the elixir executable.
For starting long running systems, one typically passes the --no-halt
option:
$ mix run --no-halt

The --no-start option can also be given and the current application,
nor its dependencies will be started. Alternatively, you may use
mix eval to evaluate a single expression without starting the current
application.
If you need to pass options to the Elixir executable at the same time
you use mix run, it can be done as follows:
$ elixir --sname hello -S mix run --no-halt

This task is automatically re-enabled, so it can be called multiple times
with different arguments.

 Command-line options

	--eval, -e - evaluates the given code
	--require, -r - executes the given pattern/file
	--parallel, -p - makes all requires parallel
	--preload-modules - preloads all modules defined in applications
	--no-archives-check - does not check archives
	--no-compile - does not compile even if files require compilation
	--no-deps-check - does not check dependencies
	--no-elixir-version-check - does not check the Elixir version from mix.exs
	--no-halt - does not halt the system after running the command
	--no-mix-exs - allows the command to run even if there is no mix.exs
	--no-start - does not start applications after compilation

mix test

Runs the tests for a project.
This task starts the current application, loads up
test/test_helper.exs and then, requires all files matching the
test/**/*_test.exs pattern in parallel.
A list of files and/or directories can be given after the task
name in order to select the files to run:
$ mix test test/some/particular/file_test.exs
$ mix test test/some/particular/dir

Tests in umbrella projects can be run from the root by specifying
the full suite path, including apps/my_app/test, in which case
recursive tests for other child apps will be skipped completely:
To run all tests for my_app from the umbrella root
$ mix test apps/my_app/test

To run a given test file on my_app from the umbrella root
$ mix test apps/my_app/test/some/particular/file_test.exs

 Understanding test results

When you run your test suite, it prints results as they run with
a summary at the end, as seen below:
$ mix test
...

 1) test greets the world (FooTest)
 test/foo_test.exs:5
 Assertion with == failed
 code: assert Foo.hello() == :world!
 left: :world
 right: :world!
 stacktrace:
 test/foo_test.exs:6: (test)

........

Finished in 0.05 seconds (0.00s async, 0.05s sync)
1 doctest, 11 tests, 1 failure

Randomized with seed 646219

For each test, the test suite will print a dot. Failed tests
are printed immediately in the format described in the next
section.
After all tests run, we print the suite summary. The first
line contains the total time spent on the suite, followed
by how much time was spent on async tests (defined with
use ExUnit.Case, async: true) vs sync ones:
Finished in 0.05 seconds (0.00s async, 0.05s sync)
Developers want to minimize the time spent on sync tests
whenever possible, as sync tests run serially and async
tests run concurrently.
Finally, how many tests we have run, how many of them
failed, how many were invalid, and so on.

 Understanding test failures

First, it contains the failure counter, followed by the test
name and the module the test was defined:
1) test greets the world (FooTest)
The next line contains the exact location of the test in the
FILE:LINE format:
test/foo_test.exs:5
If you want to re-run only this test, all you need to do is to
copy the line above and paste it in front of mix test:
$ mix test test/foo_test.exs:5

Then we show the error message, code snippet, and general information
about the failed test:
Assertion with == failed
code: assert Foo.hello() == :world!
left: :world
right: :world!
If your terminal supports coloring (see the "Coloring" section below),
a diff is typically shown between left and right sides. Finally,
we print the stacktrace of the failure:
stacktrace:
 test/foo_test.exs:6: (test)

 Command line options

	--all-warnings (--no-all-warnings) - prints all warnings, including previous compilations
(default is true except on errors)

	--color - enables color in the output

	--cover - runs coverage tool. See "Coverage" section below

	--exclude - excludes tests that match the filter

	--exit-status - use an alternate exit status to use when the test suite
fails (default is 2).

	--export-coverage - the name of the file to export coverage results to.
Only has an effect when used with --cover

	--failed - runs only tests that failed the last time they ran

	--force - forces compilation regardless of modification times

	--formatter - sets the formatter module that will print the results.
Defaults to ExUnit's built-in CLI formatter

	--include - includes tests that match the filter

	--listen-on-stdin - runs tests, and then listens on stdin. It will
re-run tests once a newline is received. See the "File system watchers"
section below

	--max-cases - sets the maximum number of tests running asynchronously. Only tests from
different modules run in parallel. Defaults to twice the number of cores

	--max-failures - the suite stops evaluating tests when this number of test
failures is reached. It runs all tests if omitted

	--no-archives-check - does not check archives

	--no-color - disables color in the output

	--no-compile - does not compile, even if files require compilation

	--no-deps-check - does not check dependencies

	--no-elixir-version-check - does not check the Elixir version from mix.exs

	--no-start - does not start applications after compilation

	--only - runs only tests that match the filter

	--partitions - sets the amount of partitions to split tests in. It must be
a number greater than zero. If set to one, it acts a no-op. If more than one,
then you must also set the MIX_TEST_PARTITION environment variable with the
partition to use in the current test run. See the "Operating system process
partitioning" section for more information

	--preload-modules - preloads all modules defined in applications

	--profile-require time - profiles the time spent to require test files.
Used only for debugging. The test suite does not run.

	--raise - raises if the test suite failed

	--seed - seeds the random number generator used to randomize the order of tests;
--seed 0 disables randomization so the tests in a single file will always be ran
in the same order they were defined in

	--slowest - prints timing information for the N slowest tests.
Automatically sets --trace and --preload-modules

	--stale - runs only tests which reference modules that changed since the
last time tests were ran with --stale. You can read more about this option
in the "The --stale option" section below

	--timeout - sets the timeout for the tests

	--trace - runs tests with detailed reporting. Automatically sets --max-cases to 1.
Note that in trace mode test timeouts will be ignored as timeout is set to :infinity

	--warnings-as-errors - (since v1.12.0) treats warnings as errors and returns a non-zero
exit status. This option only applies to test files. To treat warnings as errors during
compilation and during tests, run:
MIX_ENV=test mix do compile --warnings-as-errors + test --warnings-as-errors

 Configuration

These configurations can be set in the def project section of your mix.exs:
	:test_coverage - a set of options to be passed down to the coverage
mechanism. See the "Coverage" section for more information

	:test_elixirc_options - the compiler options to used when
loading/compiling test files. By default it disables the debug chunk
and docs chunk

	:test_paths - list of paths containing test files. Defaults to
["test"] if the test directory exists; otherwise, it defaults to [].
It is expected that all test paths contain a test_helper.exs file

	:test_pattern - a pattern to load test files. Defaults to *_test.exs

	:warn_test_pattern - a pattern to match potentially misnamed test files
and display a warning. Defaults to *_test.ex

 Coloring

Coloring is enabled by default on most Unix terminals. They are also
available on Windows consoles from Windows 10, although it must be
explicitly enabled for the current user in the registry by running
the following command:
$ reg add HKCU\Console /v VirtualTerminalLevel /t REG_DWORD /d 1

After running the command above, you must restart your current console.

 Filters

ExUnit provides tags and filtering functionality that allow developers
to select which tests to run. The most common functionality is to exclude
some particular tests from running by default in your test helper file:
Exclude all external tests from running
ExUnit.configure(exclude: [external: true])
Then, whenever desired, those tests could be included in the run via the
--include option:
$ mix test --include external:true

The example above will run all tests that have the external option set to
true. It is also possible to include all examples that have a given tag,
regardless of its value:
$ mix test --include external

Note that all tests are included by default, so unless they are excluded
first (either in the test helper or via the --exclude option) the
--include option has no effect.
For this reason, Mix also provides an --only option that excludes all
tests and includes only the given ones:
$ mix test --only external

Which is similar to:
$ mix test --include external --exclude test

It differs in that the test suite will fail if no tests are executed when the --only option is used.
In case a single file is being tested, it is possible to pass one or more specific
line numbers to run only those given tests:
$ mix test test/some/particular/file_test.exs:12

Which is equivalent to:
$ mix test --exclude test --include line:12 test/some/particular/file_test.exs

Or:
$ mix test test/some/particular/file_test.exs:12:24

Which is equivalent to:
$ mix test --exclude test --include line:12 --include line:24 test/some/particular/file_test.exs

If a given line starts a describe block, that line filter runs all tests in it.
Otherwise, it runs the closest test on or before the given line number.

 Coverage

Elixir provides built-in line-based test coverage via the --cover flag.
The test coverages shows which lines of code and in which files were executed
during the test run.

 Limitations

Coverage in Elixir has the following limitations:
	Literals, such as atoms, strings, and numbers, are not traced by coverage.
For example, if a function simply returns :ok, the atom :ok itself is
never taken into account by coverage;

	Macros, such as the ones defined by defmacro/2 and defguard/2, and code
invoked only by macros are never considered as covered, unless they are also
invoked during the tests themselves. That's because macros are invoked at
compilation time, before the test coverage instrumentation begins;

 Configuration

The :test_coverage configures the coverage tool and accepts the following options:
	:output - the output directory for cover results. Defaults to "cover".

	:tool - a module specifying the coverage tool to use.

	:summary - at the end of each coverage run, a summary of each
module is printed, with results in red or green depending on whether
the percentage is below or above a given threshold. The task will
exit with status of 1 if the total coverage is below the threshold.
The :summary option allows you to customize the summary generation
and defaults to [threshold: 90], but it may be set to false to
disable such reports.

	:export - a filename to export results to instead of generating
the coverage result on the fly. The .coverdata extension is
automatically added to the given file. This option is automatically
set via the --export-coverage option or when using process partitioning.
See mix test.coverage to compile a report from multiple exports.

	:ignore_modules - modules to ignore from generating reports and
in summaries. It is a list of module names as atoms and regular
expressions that are matched against the module names.

	:local_only - by default coverage only tracks local calls,
set this option to false if you plan to run coverage across nodes.

By default, a wrapper around OTP's cover is used as the default coverage
tool. You can learn more about how it works in the docs for
mix test.coverage. Your tool of choice can be given as follows:
def project() do
 [
 ...
 test_coverage: [tool: CoverModule]
 ...
]
end
CoverModule can be any module that exports start/2, receiving the
compilation path and the test_coverage options as arguments.
It must return either nil or an anonymous function of zero arity that
will run after the test suite is done.

 Operating system process partitioning

While ExUnit supports the ability to run tests concurrently within the same
Elixir instance, it is not always possible to run all tests concurrently. For
example, some tests may rely on global resources.
For this reason, mix test supports partitioning the test files across
different Elixir instances. This is done by setting the --partitions option
to an integer, with the number of partitions, and setting the MIX_TEST_PARTITION
environment variable to control which test partition that particular instance
is running. This can also be useful if you want to distribute testing across
multiple machines.
For example, to split a test suite into 4 partitions and run them, you would
use the following commands:
$ MIX_TEST_PARTITION=1 mix test --partitions 4
$ MIX_TEST_PARTITION=2 mix test --partitions 4
$ MIX_TEST_PARTITION=3 mix test --partitions 4
$ MIX_TEST_PARTITION=4 mix test --partitions 4

The test files are sorted upfront in a round-robin fashion. Note the partition
itself is given as an environment variable so it can be accessed in config files
and test scripts. For example, it can be used to setup a different database instance
per partition in config/test.exs.
If partitioning is enabled and --cover is used, no cover reports are generated,
as they only contain a subset of the coverage data. Instead, the coverage data
is exported to files such as cover/MIX_TEST_PARTITION.coverdata. Once you have
the results of all partitions inside cover/, you can run mix test.coverage to
get the unified report.

 The --stale option

The --stale command line option attempts to run only the test files which
reference modules that have changed since the last time you ran this task with
--stale.
The first time this task is run with --stale, all tests are run and a manifest
is generated. On subsequent runs, a test file is marked "stale" if any modules it
references (and any modules those modules reference, recursively) were modified
since the last run with --stale. A test file is also marked "stale" if it has
been changed since the last run with --stale.
The --stale option is extremely useful for software iteration, allowing you to
run only the relevant tests as you perform changes to the codebase.

 File-system watchers

You can integrate mix test with file system watchers through the command line
via the --listen-on-stdin option. For example, you can use fswatch
or similar to emit newlines whenever there is a change, which will cause your test
suite to re-run:
$ fswatch lib test | mix test --listen-on-stdin

This can be combined with the --stale option to re-run only the test files that
have changed as well as the tests that have gone stale due to changes in lib.

 Aborting the suite

It is possible to abort the test suite with Ctrl+\, which sends a SIGQUIT
signal to the Erlang VM. ExUnit will intercept this signal to show all tests
that have been aborted and print the results collected so far.
This can be useful in case the suite gets stuck and you don't want to wait
until the timeout times passes (which defaults to 30 seconds).

mix test.coverage

Build reports from exported test coverage.
In this moduledoc, we will describe how the default test
coverage works in Elixir and also explore how it is capable
of exporting coverage results to group reports from multiple
test runs.

 Line coverage

Elixir uses Erlang's :cover
for its default test coverage. Erlang coverage is done by tracking
executable lines of code. This implies blank lines, code comments,
function signatures, and patterns are not necessarily executable and
therefore won't be tracked in coverage reports. Code in macros are
also often executed at compilation time, and therefore may not be covered.
Similarly, Elixir AST literals, such as atoms, are not executable either.
Let's see an example:
if some_condition? do
 do_this()
else
 do_that()
end
In the example above, if your tests exercise both some_condition? == true
and some_condition? == false, all branches will be covered, as they all
have executable code. However, the following code
if some_condition? do
 do_this()
else
 :default
end
won't ever mark the :default branch as covered, as there is no executable
code in the else branch. Note, however, this issue does not happen on case
or cond, as Elixir is able to mark the clause operator -> as executable in
such corner cases:
case some_condition? do
 true ->
 do_this()

 false ->
 :default
end
If the code above is tested with both conditions, you should see entries
in both branches marked as covered.
Finally, it is worth discussing that line coverage by itself has its own
limitations. For example, take the following code:
do_this() || do_that()
Line coverage is not capable of expressing that both do_this() and
do_that() have been executed, since as soon as do_this() is executed,
the whole line is covered. Other techniques, such as branch coverage,
can help spot those cases, but they are not currently supported by the
default coverage tool.
Overall, code coverage can be a great tool for finding flaws in our
code (such as functions that haven't been covered) but it can also lead
teams into a false sense of security since 100% coverage never means all
different executions flows have been asserted, even with the most advanced
coverage techniques. It is up to you and your team to specify how much
emphasis you want to place on it.

 Exporting coverage

This task can be used when you need to group the coverage
across multiple test runs. Let's see some examples.

 Example: aggregating partitioned runs

If you partition your tests across multiple runs,
you can unify the report as shown below:
$ MIX_TEST_PARTITION=1 mix test --partitions 2 --cover
$ MIX_TEST_PARTITION=2 mix test --partitions 2 --cover
$ mix test.coverage

This works because the --partitions option
automatically exports the coverage results.

 Example: aggregating coverage reports from all umbrella children

If you run mix test.coverage inside an umbrella,
it will automatically gather exported cover results
from all umbrella children - as long as the coverage
results have been exported, like this:
from the umbrella root
$ mix test --cover --export-coverage default
$ mix test.coverage
Of course, if you want to actually partition the tests,
you can also do:
from the umbrella root
$ MIX_TEST_PARTITION=1 mix test --partitions 2 --cover
$ MIX_TEST_PARTITION=2 mix test --partitions 2 --cover
$ mix test.coverage
On the other hand, if you want partitioned tests but
per-app reports, you can do:
from the umbrella root
$ MIX_TEST_PARTITION=1 mix test --partitions 2 --cover
$ MIX_TEST_PARTITION=2 mix test --partitions 2 --cover
$ mix cmd mix test.coverage
When running test.coverage from the umbrella root, it
will use the :test_coverage configuration from the umbrella
root.
Finally, note the coverage itself is not measured across
the projects themselves. For example, if project B depends
on A, and if there is code in A that is only executed from
project B, those lines will not be marked as covered, which
is important, as those projects should be developed and tested
in isolation.

 Other scenarios

There may be other scenarios where you want to export coverage.
For example, you may have broken your test suite into two, one
for unit tests and another for integration tests. In such scenarios,
you can explicitly use the --export-coverage command line option,
or the :export option under :test_coverage in your mix.exs file.

mix xref

Prints cross reference information between modules.
The xref task expects a mode as first argument:
$ mix xref MODE

All available modes are discussed below.
This task is automatically re-enabled, so you can print
information multiple times in the same Mix invocation.

 mix xref callers MODULE

Prints all callers of the given module. Example:
$ mix xref callers MyMod

 mix xref trace FILE

Compiles the given file listing all dependencies within the same app.
It includes the type and line for each one. Example:
$ mix xref trace lib/my_app/router.ex

The --label option may be given to keep only certain traces
(compile, runtime or export):
$ mix xref trace lib/my_app/router.ex --label compile

If you have an umbrella application, we also recommend using the
--include-siblings flag to see the dependencies from sibling
applications. The trace command is not currently supported at the
umbrella root.

 Example

Imagine the given file lib/b.ex:
defmodule B do
 import A
 A.macro()
 macro()
 A.fun()
 fun()
 def calls_macro, do: A.macro()
 def calls_fun, do: A.fun()
 def calls_struct, do: %A{}
end
mix xref trace will print:
lib/b.ex:2: require A (export)
lib/b.ex:3: call A.macro/0 (compile)
lib/b.ex:4: import A.macro/0 (compile)
lib/b.ex:5: call A.fun/0 (compile)
lib/b.ex:6: call A.fun/0 (compile)
lib/b.ex:6: import A.fun/0 (compile)
lib/b.ex:7: call A.macro/0 (compile)
lib/b.ex:8: call A.fun/0 (runtime)
lib/b.ex:9: struct A (export)

 mix xref graph

Prints a file dependency graph where an edge from A to B indicates
that A (source) depends on B (sink).
$ mix xref graph --format stats

The following options are accepted:
	--exclude - path to exclude. Can be repeated to exclude multiple paths.

	--label - only shows relationships with the given label.
The labels are "compile", "export" and "runtime". By default,
the --label option simply filters the printed graph to show
only relationships with the given label. You can pass --only-direct
to trim the graph to only the nodes that have the direct
relationship given by label. There is also a special label
called "compile-connected" that keeps only compile-time files
with at least one transitive dependency. See "Dependency types"
section below.

	--group - provide comma-separated paths to consider as a group. Dependencies
from and into multiple files of the group are considered a single dependency.
Dependencies between the group elements are ignored. This is useful when you
are computing compile and compile-connected dependencies and you want a
series of files to be treated as one. The group is printed using the first path,
with a + suffix. Can be repeated to create multiple groups.

	--only-direct - keeps only files with the direct relationship
given by --label

	--only-nodes - only shows the node names (no edges).
Generally useful with the --sink flag

	--source - displays all files that the given source file
references (directly or indirectly). Can be repeated to display
references from multiple sources.

	--sink - displays all files that reference the given file
(directly or indirectly). Can be repeated.

	--min-cycle-size - controls the minimum cycle size on formats
like stats and cycles

	--format - can be set to one of:
	pretty - prints the graph to the terminal using Unicode characters.
Each prints each file followed by the files it depends on. This is the
default except on Windows;

	plain - the same as pretty except ASCII characters are used instead of
Unicode characters. This is the default on Windows;

	stats - prints general statistics about the graph;

	cycles - prints all cycles in the graph;

	dot - produces a DOT graph description in xref_graph.dot in the
current directory. Warning: this will override any previously generated file

	--output (since v1.15.0) - can be set to one of
	- - prints the output to standard output;

	a path - writes the output graph to the given path

Defaults to xref_graph.dot in the current directory.

The --source and --sink options are particularly useful when trying to understand
how the modules in a particular file interact with the whole system. You can combine
those options with --label and --only-nodes to get all files that exhibit a certain
property, for example:
To show all compile-time relationships
$ mix xref graph --label compile

To get the tree that depend on lib/foo.ex at compile time
$ mix xref graph --label compile --sink lib/foo.ex

To get all files that depend on lib/foo.ex at compile time
$ mix xref graph --label compile --sink lib/foo.ex --only-nodes

To get all paths between two files
$ mix xref graph --source lib/foo.ex --sink lib/bar.ex

To show general statistics about the graph
$ mix xref graph --format stats

 Understanding the printed graph

When mix xref graph runs, it will print a tree of the following
format. Imagine the following code:
lib/a.ex
defmodule A do
 IO.puts B.hello()
end

lib/b.ex
defmodule B do
 def hello, do: C.world()
end

lib/c.ex
defmodule C do
 def world, do: "hello world"
end
It will print:
$ mix xref graph
lib/a.ex
└── lib/b.ex (compile)
lib/b.ex
└── lib/c.ex
lib/c.ex

This tree means that lib/a.ex depends on lib/b.ex at compile
time. And lib/b.ex depends on lib/c.ex at runtime. This is often
problematic because if lib/c.ex changes, lib/a.ex also has to
recompile due to this indirect compile time dependency. When you pass
--label compile, the graph shows only the compile-time dependencies:
$ mix xref graph --label compile
lib/a.ex
└── lib/b.ex (compile)

The --label compile flag removes all non-compile dependencies. However,
this can be misleading because having direct compile time dependencies is
not necessarily an issue. The biggest concern, as mentioned above, are the
transitive compile time dependencies. You can get all compile time
dependencies that cause transitive compile time dependencies by using
--label compile-connected:
$ mix xref graph --label compile-connected
lib/a.ex
└── lib/b.ex (compile)

The above says lib/a.ex depends on lib/b.ex and that causes transitive
compile time dependencies - as we know, lib/a.ex also depends on lib/c.ex.
We can retrieve those transitive dependencies by passing lib/b.ex as
--source to mix xref graph:
$ mix xref graph --source lib/b.ex
lib/b.ex
└── lib/c.ex

Similarly, you can use the --label compile and the --sink flag to find
all compile time dependencies that will recompile once the sink changes:
$ mix xref graph --label compile --sink lib/c.ex
lib/a.ex
└── lib/b.ex (compile)

If you have an umbrella application, we also recommend using the
--include-siblings flag to see the dependencies from sibling
applications. When invoked at the umbrella root, the graph
command will list all files from all umbrella children, without
any namespacing.

 Dependency types

Elixir tracks three types of dependencies between modules: compile,
exports, and runtime. If a module has a compile time dependency on
another module, the caller module has to be recompiled whenever the
callee changes. Compile-time dependencies are typically added when
using macros or when invoking functions in the module body (outside
of functions). You can list all dependencies in a file by running
mix xref trace path/to/file.ex.
Export dependencies are compile time dependencies on the module API,
namely structs and its public definitions. For example, if you import
a module but only use its functions, it is an export dependency. If
you use a struct, it is an export dependency too. Export dependencies
are only recompiled if the module API changes. Note, however, that compile
time dependencies have higher precedence than exports. Therefore if
you import a module and use its macros, it is a compile time dependency.
Runtime dependencies are added whenever you invoke another module
inside a function. Modules with runtime dependencies do not have
to be compiled when the callee changes, unless there is a transitive
compile or an outdated export time dependency between them. The option
--label compile-connected can be used to find the first case.

 Shared options

Those options are shared across all modes:
	--fail-above - generates a failure if the relevant metric is above the
given threshold. Applies to all modes except mix xref graph --format stats.

	--include-siblings - includes dependencies that have :in_umbrella set
to true in the current project in the reports. This can be used to find
callers or to analyze graphs between projects (it applies only to trace
subcommand)

	--no-compile - does not compile even if files require compilation

	--no-deps-check - does not check dependencies

	--no-archives-check - does not check archives

	--no-elixir-version-check - does not check the Elixir version from mix.exs

 Summary

 Functions

 calls(opts \\ [])

 deprecated

 Returns a list of information of all the runtime function calls in the project.

 Functions

 Link to this function

 calls(opts \\ [])

 View Source

 This function is deprecated. Use compilation tracers described in the Code module.

 @spec calls(keyword()) :: [
 %{callee: {module(), atom(), arity()}, line: integer(), file: String.t()}
]

Returns a list of information of all the runtime function calls in the project.
Each item in the list is a map with the following keys:
	:callee - a tuple containing the module, function, and arity of the call
	:line - an integer representing the line where the function is called
	:file - a binary representing the file where the function is called
	:caller_module - the module where the function is called

This function returns an empty list when used at the root of an umbrella
project because there is no compile manifest to extract the function call
information from. To get the function calls of each child in an umbrella,
execute the function at the root of each individual application.

 OEBPS/dist/epub-RKEUJJI5.js
(()=>{var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",d={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=d,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},h=new s;function a(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{l(e,!0)}),t.addEventListener("mouseleave",n=>{l(e,!1)})})}function l(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),a()});})();

